This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | lpss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝐽 ∈ Top ) | |
| 3 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ 𝑋 ) | |
| 4 | 3 | ssdifssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 5 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) | |
| 6 | 5 | ssdifd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
| 7 | 1 | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ∧ ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 9 | 8 | sseld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 10 | 5 3 | sstrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 11 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 12 | 2 10 11 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 13 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 14 | 2 3 13 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 15 | 9 12 14 | 3imtr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) → 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |