This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of CC and is well-behaved when s contains no isolated points, we will restrict our attention to the cases s = RR or s = CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dv | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdv | ⊢ D | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cc | ⊢ ℂ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℂ |
| 4 | vf | ⊢ 𝑓 | |
| 5 | cpm | ⊢ ↑pm | |
| 6 | 1 | cv | ⊢ 𝑠 |
| 7 | 2 6 5 | co | ⊢ ( ℂ ↑pm 𝑠 ) |
| 8 | vx | ⊢ 𝑥 | |
| 9 | cnt | ⊢ int | |
| 10 | ctopn | ⊢ TopOpen | |
| 11 | ccnfld | ⊢ ℂfld | |
| 12 | 11 10 | cfv | ⊢ ( TopOpen ‘ ℂfld ) |
| 13 | crest | ⊢ ↾t | |
| 14 | 12 6 13 | co | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) |
| 15 | 14 9 | cfv | ⊢ ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) |
| 16 | 4 | cv | ⊢ 𝑓 |
| 17 | 16 | cdm | ⊢ dom 𝑓 |
| 18 | 17 15 | cfv | ⊢ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) |
| 19 | 8 | cv | ⊢ 𝑥 |
| 20 | 19 | csn | ⊢ { 𝑥 } |
| 21 | vz | ⊢ 𝑧 | |
| 22 | 17 20 | cdif | ⊢ ( dom 𝑓 ∖ { 𝑥 } ) |
| 23 | 21 | cv | ⊢ 𝑧 |
| 24 | 23 16 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) |
| 25 | cmin | ⊢ − | |
| 26 | 19 16 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 27 | 24 26 25 | co | ⊢ ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) |
| 28 | cdiv | ⊢ / | |
| 29 | 23 19 25 | co | ⊢ ( 𝑧 − 𝑥 ) |
| 30 | 27 29 28 | co | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) |
| 31 | 21 22 30 | cmpt | ⊢ ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 32 | climc | ⊢ limℂ | |
| 33 | 31 19 32 | co | ⊢ ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) |
| 34 | 20 33 | cxp | ⊢ ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 35 | 8 18 34 | ciun | ⊢ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 36 | 1 4 3 7 35 | cmpo | ⊢ ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 37 | 0 36 | wceq | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |