This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: P is a limit point of S iff it is a limit point of S \ { P } . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | lpdifsn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 3 | ssdifss | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) | |
| 4 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ) ) |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ) ) |
| 6 | difabs | ⊢ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) = ( 𝑆 ∖ { 𝑃 } ) | |
| 7 | 6 | fveq2i | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) |
| 8 | 7 | eleq2i | ⊢ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
| 9 | 5 8 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 10 | 2 9 | bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |