This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldv | ⊢ Rel ( 𝑆 D 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) | |
| 2 | 1 | rgenw | ⊢ ∀ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) Rel ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 3 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) Rel ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 4 | 2 3 | mpbir | ⊢ Rel ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 5 | df-rel | ⊢ ( Rel ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( V × V ) ) | |
| 6 | 4 5 | mpbi | ⊢ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( V × V ) |
| 7 | 6 | rgenw | ⊢ ∀ 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( V × V ) |
| 8 | 7 | rgenw | ⊢ ∀ 𝑠 ∈ 𝒫 ℂ ∀ 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( V × V ) |
| 9 | df-dv | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 10 | 9 | ovmptss | ⊢ ( ∀ 𝑠 ∈ 𝒫 ℂ ∀ 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( V × V ) → ( 𝑆 D 𝐹 ) ⊆ ( V × V ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( 𝑆 D 𝐹 ) ⊆ ( V × V ) |
| 12 | df-rel | ⊢ ( Rel ( 𝑆 D 𝐹 ) ↔ ( 𝑆 D 𝐹 ) ⊆ ( V × V ) ) | |
| 13 | 11 12 | mpbir | ⊢ Rel ( 𝑆 D 𝐹 ) |