This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fmpox.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | dmmpossx | ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpox.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑢 𝐵 | |
| 3 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 | |
| 4 | nfcv | ⊢ Ⅎ 𝑢 𝐶 | |
| 5 | nfcv | ⊢ Ⅎ 𝑣 𝐶 | |
| 6 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 𝑢 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 | |
| 9 | 7 8 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
| 10 | csbeq1a | ⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) | |
| 11 | csbeq1a | ⊢ ( 𝑦 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) | |
| 12 | csbeq1a | ⊢ ( 𝑥 = 𝑢 → ⦋ 𝑣 / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) | |
| 13 | 11 12 | sylan9eqr | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 14 | 2 3 4 5 6 9 10 13 | cbvmpox | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 15 | vex | ⊢ 𝑢 ∈ V | |
| 16 | vex | ⊢ 𝑣 ∈ V | |
| 17 | 15 16 | op1std | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑡 ) = 𝑢 ) |
| 18 | 17 | csbeq1d | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 ) |
| 19 | 15 16 | op2ndd | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑡 ) = 𝑣 ) |
| 20 | 19 | csbeq1d | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 21 | 20 | csbeq2dv | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 22 | 18 21 | eqtrd | ⊢ ( 𝑡 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 23 | 22 | mpomptx | ⊢ ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 24 | 14 1 23 | 3eqtr4i | ⊢ 𝐹 = ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ 𝐶 ) |
| 25 | 24 | dmmptss | ⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 26 | nfcv | ⊢ Ⅎ 𝑢 ( { 𝑥 } × 𝐵 ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑥 { 𝑢 } | |
| 28 | 27 3 | nfxp | ⊢ Ⅎ 𝑥 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 29 | sneq | ⊢ ( 𝑥 = 𝑢 → { 𝑥 } = { 𝑢 } ) | |
| 30 | 29 10 | xpeq12d | ⊢ ( 𝑥 = 𝑢 → ( { 𝑥 } × 𝐵 ) = ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ) |
| 31 | 26 28 30 | cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 32 | 25 31 | sseqtrri | ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |