This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a limit point of the domain of the function F , then there is at most one limit value of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | ||
| limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | limcmo | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | |
| 4 | limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | 4 | cnfldhaus | ⊢ 𝐾 ∈ Haus |
| 6 | eqid | ⊢ ( 𝐴 ∖ { 𝐵 } ) = ( 𝐴 ∖ { 𝐵 } ) | |
| 7 | eqid | ⊢ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) | |
| 8 | 1 2 3 4 6 7 | limcflflem | ⊢ ( 𝜑 → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 9 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 10 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) | |
| 11 | 1 9 10 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
| 12 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 13 | 12 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 14 | 13 | hausflf | ⊢ ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 15 | 5 8 11 14 | mp3an2i | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 16 | 1 2 3 4 6 7 | limcflf | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) |
| 18 | 17 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) |
| 19 | 15 18 | mpbird | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |