This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | perfopn | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐾 ∈ Perf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 3 | perftop | ⊢ ( 𝐽 ∈ Perf → 𝐽 ∈ Top ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
| 5 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 4 5 | sylib | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | elssuni | ⊢ ( 𝑌 ∈ 𝐽 → 𝑌 ⊆ ∪ 𝐽 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝑌 ⊆ ∪ 𝐽 ) |
| 9 | 8 1 | sseqtrrdi | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝑌 ⊆ 𝑋 ) |
| 10 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 12 | 2 11 | eqeltrid | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 13 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐾 ∈ Top ) |
| 15 | 9 | sselda | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 16 | 1 | perfi | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑥 ∈ 𝑋 ) → ¬ { 𝑥 } ∈ 𝐽 ) |
| 17 | 16 | adantlr | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) → ¬ { 𝑥 } ∈ 𝐽 ) |
| 18 | 15 17 | syldan | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → ¬ { 𝑥 } ∈ 𝐽 ) |
| 19 | 2 | eleq2i | ⊢ ( { 𝑥 } ∈ 𝐾 ↔ { 𝑥 } ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 20 | restopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽 ) → ( { 𝑥 } ∈ ( 𝐽 ↾t 𝑌 ) ↔ ( { 𝑥 } ∈ 𝐽 ∧ { 𝑥 } ⊆ 𝑌 ) ) ) | |
| 21 | 3 20 | sylan | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → ( { 𝑥 } ∈ ( 𝐽 ↾t 𝑌 ) ↔ ( { 𝑥 } ∈ 𝐽 ∧ { 𝑥 } ⊆ 𝑌 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → ( { 𝑥 } ∈ ( 𝐽 ↾t 𝑌 ) ↔ ( { 𝑥 } ∈ 𝐽 ∧ { 𝑥 } ⊆ 𝑌 ) ) ) |
| 23 | simpl | ⊢ ( ( { 𝑥 } ∈ 𝐽 ∧ { 𝑥 } ⊆ 𝑌 ) → { 𝑥 } ∈ 𝐽 ) | |
| 24 | 22 23 | biimtrdi | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → ( { 𝑥 } ∈ ( 𝐽 ↾t 𝑌 ) → { 𝑥 } ∈ 𝐽 ) ) |
| 25 | 19 24 | biimtrid | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → ( { 𝑥 } ∈ 𝐾 → { 𝑥 } ∈ 𝐽 ) ) |
| 26 | 18 25 | mtod | ⊢ ( ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑌 ) → ¬ { 𝑥 } ∈ 𝐾 ) |
| 27 | 26 | ralrimiva | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝑌 ¬ { 𝑥 } ∈ 𝐾 ) |
| 28 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 29 | 12 28 | syl | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝑌 = ∪ 𝐾 ) |
| 30 | 27 29 | raleqtrdv | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → ∀ 𝑥 ∈ ∪ 𝐾 ¬ { 𝑥 } ∈ 𝐾 ) |
| 31 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 32 | 31 | isperf3 | ⊢ ( 𝐾 ∈ Perf ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐾 ¬ { 𝑥 } ∈ 𝐾 ) ) |
| 33 | 14 30 32 | sylanbrc | ⊢ ( ( 𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽 ) → 𝐾 ∈ Perf ) |