This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perfection of a subspace. Note that the term "perfect set" is reserved forclosed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | restperf | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 3 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | 3 4 | sylanb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 7 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 9 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 10 | 9 | isperf | ⊢ ( 𝐾 ∈ Perf ↔ ( 𝐾 ∈ Top ∧ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 11 | 10 | baib | ⊢ ( 𝐾 ∈ Top → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 12 | 8 11 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 13 | sseqin2 | ⊢ ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ) | |
| 14 | ssid | ⊢ 𝑌 ⊆ 𝑌 | |
| 15 | 1 2 | restlp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
| 16 | 14 15 | mp3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
| 17 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 18 | 6 17 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ 𝐾 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
| 20 | 16 19 | eqtr3d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
| 21 | 20 18 | eqeq12d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 22 | 13 21 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 23 | 12 22 | bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) ) |