This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | ||
| mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | ||
| mreexexlem4d.9 | ⊢ ( 𝜑 → 𝐿 ∈ ω ) | ||
| mreexexlem4d.A | ⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) | ||
| mreexexlem4d.B | ⊢ ( 𝜑 → ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) ) | ||
| Assertion | mreexexlem4d | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 6 | mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 7 | mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | |
| 8 | mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | |
| 9 | mreexexlem4d.9 | ⊢ ( 𝜑 → 𝐿 ∈ ω ) | |
| 10 | mreexexlem4d.A | ⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) | |
| 11 | mreexexlem4d.B | ⊢ ( 𝜑 → ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) ) | |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 16 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 17 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
| 18 | animorrl | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) ) | |
| 19 | 12 2 3 13 14 15 16 17 18 | mreexexlem3d | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 20 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ 𝐹 ) | |
| 21 | 20 | biimpi | ⊢ ( 𝐹 ≠ ∅ → ∃ 𝑟 𝑟 ∈ 𝐹 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ∃ 𝑟 𝑟 ∈ 𝐹 ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 26 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 27 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 28 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝑟 ∈ 𝐹 ) | |
| 30 | 23 2 3 24 25 26 27 28 29 | mreexexlem2d | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑞 ∈ 𝐺 ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) |
| 31 | 3anass | ⊢ ( ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ↔ ( 𝑞 ∈ 𝐺 ∧ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) | |
| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 33 | 32 | elfvexd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑋 ∈ V ) |
| 34 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ) | |
| 35 | difsnb | ⊢ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ↔ ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) = ( 𝐹 ∖ { 𝑟 } ) ) | |
| 36 | 34 35 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) = ( 𝐹 ∖ { 𝑟 } ) ) |
| 37 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 38 | 37 | ssdifssd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 39 | 38 | ssdifd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
| 40 | 36 39 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
| 41 | difun1 | ⊢ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) | |
| 42 | 40 41 | sseqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) ) |
| 43 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 44 | 43 | ssdifd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ∖ { 𝑞 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
| 45 | 44 41 | sseqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ∖ { 𝑞 } ) ⊆ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) ) |
| 46 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 47 | simpr1 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑞 ∈ 𝐺 ) | |
| 48 | uncom | ⊢ ( 𝐻 ∪ { 𝑞 } ) = ( { 𝑞 } ∪ 𝐻 ) | |
| 49 | 48 | uneq2i | ⊢ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) |
| 50 | unass | ⊢ ( ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) ∪ 𝐻 ) = ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) | |
| 51 | difsnid | ⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) = 𝐺 ) | |
| 52 | 51 | uneq1d | ⊢ ( 𝑞 ∈ 𝐺 → ( ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) ∪ 𝐻 ) = ( 𝐺 ∪ 𝐻 ) ) |
| 53 | 50 52 | eqtr3id | ⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) = ( 𝐺 ∪ 𝐻 ) ) |
| 54 | 49 53 | eqtrid | ⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( 𝐺 ∪ 𝐻 ) ) |
| 55 | 47 54 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( 𝐺 ∪ 𝐻 ) ) |
| 56 | 55 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 57 | 46 56 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) ) |
| 58 | 57 | ssdifssd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) ) |
| 59 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) | |
| 60 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) ) |
| 61 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐿 ∈ ω ) |
| 62 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑟 ∈ 𝐹 ) | |
| 63 | 3anan12 | ⊢ ( ( 𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹 ) ↔ ( 𝐹 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) ) ) | |
| 64 | dif1ennn | ⊢ ( ( 𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) | |
| 65 | 63 64 | sylbir | ⊢ ( ( 𝐹 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) |
| 66 | 65 | expcom | ⊢ ( ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ≈ suc 𝐿 → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) ) |
| 67 | 61 62 66 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ≈ suc 𝐿 → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) ) |
| 68 | 3anan12 | ⊢ ( ( 𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺 ) ↔ ( 𝐺 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) ) ) | |
| 69 | dif1ennn | ⊢ ( ( 𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺 ) → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) | |
| 70 | 68 69 | sylbir | ⊢ ( ( 𝐺 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) ) → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) |
| 71 | 70 | expcom | ⊢ ( ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) → ( 𝐺 ≈ suc 𝐿 → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
| 72 | 61 47 71 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ≈ suc 𝐿 → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
| 73 | 67 72 | orim12d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) → ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ∨ ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) ) |
| 74 | 60 73 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ∨ ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
| 75 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 76 | 33 42 45 58 59 74 75 | mreexexlemd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) |
| 77 | 33 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑋 ∈ V ) |
| 78 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 79 | 78 | difss2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ⊆ 𝑋 ) |
| 80 | 77 79 | ssexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ∈ V ) |
| 81 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ) | |
| 82 | 81 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ ( 𝐺 ∖ { 𝑞 } ) ) |
| 83 | 82 | difss2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ 𝐺 ) |
| 84 | simplr1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑞 ∈ 𝐺 ) | |
| 85 | 84 | snssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → { 𝑞 } ⊆ 𝐺 ) |
| 86 | 83 85 | unssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ { 𝑞 } ) ⊆ 𝐺 ) |
| 87 | 80 86 | sselpwd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ { 𝑞 } ) ∈ 𝒫 𝐺 ) |
| 88 | difsnid | ⊢ ( 𝑟 ∈ 𝐹 → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) = 𝐹 ) | |
| 89 | 88 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) = 𝐹 ) |
| 90 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ) | |
| 91 | en2sn | ⊢ ( ( 𝑟 ∈ V ∧ 𝑞 ∈ V ) → { 𝑟 } ≈ { 𝑞 } ) | |
| 92 | 91 | el2v | ⊢ { 𝑟 } ≈ { 𝑞 } |
| 93 | 92 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → { 𝑟 } ≈ { 𝑞 } ) |
| 94 | disjdifr | ⊢ ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ | |
| 95 | 94 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ ) |
| 96 | ssdifin0 | ⊢ ( 𝑖 ⊆ ( 𝐺 ∖ { 𝑞 } ) → ( 𝑖 ∩ { 𝑞 } ) = ∅ ) | |
| 97 | 82 96 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∩ { 𝑞 } ) = ∅ ) |
| 98 | unen | ⊢ ( ( ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ { 𝑟 } ≈ { 𝑞 } ) ∧ ( ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ ∧ ( 𝑖 ∩ { 𝑞 } ) = ∅ ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) ≈ ( 𝑖 ∪ { 𝑞 } ) ) | |
| 99 | 90 93 95 97 98 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) ≈ ( 𝑖 ∪ { 𝑞 } ) ) |
| 100 | 89 99 | eqbrtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ) |
| 101 | unass | ⊢ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) = ( 𝑖 ∪ ( { 𝑞 } ∪ 𝐻 ) ) | |
| 102 | uncom | ⊢ ( { 𝑞 } ∪ 𝐻 ) = ( 𝐻 ∪ { 𝑞 } ) | |
| 103 | 102 | uneq2i | ⊢ ( 𝑖 ∪ ( { 𝑞 } ∪ 𝐻 ) ) = ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) |
| 104 | 101 103 | eqtr2i | ⊢ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) |
| 105 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) | |
| 106 | 104 105 | eqeltrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) |
| 107 | breq2 | ⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( 𝐹 ≈ 𝑗 ↔ 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ) ) | |
| 108 | uneq1 | ⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( 𝑗 ∪ 𝐻 ) = ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ) | |
| 109 | 108 | eleq1d | ⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ↔ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 110 | 107 109 | anbi12d | ⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ↔ ( 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ∧ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
| 111 | 110 | rspcev | ⊢ ( ( ( 𝑖 ∪ { 𝑞 } ) ∈ 𝒫 𝐺 ∧ ( 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ∧ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 112 | 87 100 106 111 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 113 | 76 112 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 114 | 31 113 | sylan2br | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 115 | 30 114 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 116 | 115 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 117 | 22 116 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 118 | 19 117 | pm2.61dane | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |