This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used in mreexexlem4d to prove the induction step in mreexexd . See the proof of Proposition 4.2.1 in FaureFrolicher p. 86 to 87. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | ||
| mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | ||
| mreexexlem2d.9 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐹 ) | ||
| Assertion | mreexexlem2d | ⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 6 | mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 7 | mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | |
| 8 | mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | |
| 9 | mreexexlem2d.9 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐹 ) | |
| 10 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) | |
| 13 | ssun2 | ⊢ 𝐻 ⊆ ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) | |
| 14 | difundir | ⊢ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) = ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∖ { 𝑌 } ) ) | |
| 15 | incom | ⊢ ( 𝐹 ∩ 𝐻 ) = ( 𝐻 ∩ 𝐹 ) | |
| 16 | ssdifin0 | ⊢ ( 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) → ( 𝐹 ∩ 𝐻 ) = ∅ ) | |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → ( 𝐹 ∩ 𝐻 ) = ∅ ) |
| 18 | 15 17 | eqtr3id | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐹 ) = ∅ ) |
| 19 | minel | ⊢ ( ( 𝑌 ∈ 𝐹 ∧ ( 𝐻 ∩ 𝐹 ) = ∅ ) → ¬ 𝑌 ∈ 𝐻 ) | |
| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐻 ) |
| 21 | difsnb | ⊢ ( ¬ 𝑌 ∈ 𝐻 ↔ ( 𝐻 ∖ { 𝑌 } ) = 𝐻 ) | |
| 22 | 20 21 | sylib | ⊢ ( 𝜑 → ( 𝐻 ∖ { 𝑌 } ) = 𝐻 ) |
| 23 | 22 | uneq2d | ⊢ ( 𝜑 → ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∖ { 𝑌 } ) ) = ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ) |
| 24 | 14 23 | eqtrid | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) = ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ) |
| 25 | 13 24 | sseqtrrid | ⊢ ( 𝜑 → 𝐻 ⊆ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) |
| 26 | 3 1 8 | mrissd | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ⊆ 𝑋 ) |
| 27 | 26 | ssdifssd | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ⊆ 𝑋 ) |
| 28 | 1 2 27 | mrcssidd | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 29 | 25 28 | sstrd | ⊢ ( 𝜑 → 𝐻 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝐻 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 31 | 12 30 | unssd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝐺 ∪ 𝐻 ) ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 32 | 11 2 | mrcssvd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ⊆ 𝑋 ) |
| 33 | 11 2 31 32 | mrcssd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) |
| 34 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ⊆ 𝑋 ) |
| 35 | 11 2 34 | mrcidmd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) = ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 36 | 33 35 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 37 | 10 36 | sstrd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 38 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝑌 ∈ 𝐹 ) |
| 39 | 37 38 | sseldd | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
| 41 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ 𝐻 ) | |
| 42 | 41 38 | sselid | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → 𝑌 ∈ ( 𝐹 ∪ 𝐻 ) ) |
| 43 | 2 3 11 40 42 | ismri2dad | ⊢ ( ( 𝜑 ∧ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 44 | 39 43 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 45 | nss | ⊢ ( ¬ 𝐺 ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) | |
| 46 | 44 45 | sylib | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) |
| 47 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → 𝑔 ∈ 𝐺 ) | |
| 48 | ssun1 | ⊢ ( 𝐹 ∖ { 𝑌 } ) ⊆ ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) | |
| 49 | 48 24 | sseqtrrid | ⊢ ( 𝜑 → ( 𝐹 ∖ { 𝑌 } ) ⊆ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) |
| 50 | 49 28 | sstrd | ⊢ ( 𝜑 → ( 𝐹 ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( 𝐹 ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) |
| 52 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) | |
| 53 | 51 52 | ssneldd | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ) |
| 54 | unass | ⊢ ( ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ∪ { 𝑔 } ) = ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) | |
| 55 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 56 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 57 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
| 58 | difss | ⊢ ( 𝐹 ∖ { 𝑌 } ) ⊆ 𝐹 | |
| 59 | unss1 | ⊢ ( ( 𝐹 ∖ { 𝑌 } ) ⊆ 𝐹 → ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ⊆ ( 𝐹 ∪ 𝐻 ) ) | |
| 60 | 58 59 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ⊆ ( 𝐹 ∪ 𝐻 ) ) |
| 61 | 55 2 3 57 60 | mrissmrid | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ∈ 𝐼 ) |
| 62 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 63 | 62 | difss2d | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → 𝐺 ⊆ 𝑋 ) |
| 64 | 63 47 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → 𝑔 ∈ 𝑋 ) |
| 65 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) = ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ) ) |
| 67 | 52 66 | neleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ) ) |
| 68 | 55 2 3 56 61 64 67 | mreexmrid | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( ( ( 𝐹 ∖ { 𝑌 } ) ∪ 𝐻 ) ∪ { 𝑔 } ) ∈ 𝐼 ) |
| 69 | 54 68 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) |
| 70 | 47 53 69 | jca32 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) ) → ( 𝑔 ∈ 𝐺 ∧ ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) ) |
| 71 | 70 | ex | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ( 𝑔 ∈ 𝐺 ∧ ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) ) ) |
| 72 | 71 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ ( 𝑁 ‘ ( ( 𝐹 ∪ 𝐻 ) ∖ { 𝑌 } ) ) ) → ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) ) ) |
| 73 | 46 72 | mpd | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) ) |
| 74 | df-rex | ⊢ ( ∃ 𝑔 ∈ 𝐺 ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ↔ ∃ 𝑔 ( 𝑔 ∈ 𝐺 ∧ ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) ) | |
| 75 | 73 74 | sylibr | ⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 ( ¬ 𝑔 ∈ ( 𝐹 ∖ { 𝑌 } ) ∧ ( ( 𝐹 ∖ { 𝑌 } ) ∪ ( 𝐻 ∪ { 𝑔 } ) ) ∈ 𝐼 ) ) |