This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base case of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | ||
| mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | ||
| mreexexlem3d.9 | ⊢ ( 𝜑 → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) ) | ||
| Assertion | mreexexlem3d | ⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 6 | mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 7 | mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | |
| 8 | mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | |
| 9 | mreexexlem3d.9 | ⊢ ( 𝜑 → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) ) | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 = ∅ ) | |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 12 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐺 = ∅ ) | |
| 14 | 13 | uneq1d | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐺 ∪ 𝐻 ) = ( ∅ ∪ 𝐻 ) ) |
| 15 | uncom | ⊢ ( 𝐻 ∪ ∅ ) = ( ∅ ∪ 𝐻 ) | |
| 16 | un0 | ⊢ ( 𝐻 ∪ ∅ ) = 𝐻 | |
| 17 | 15 16 | eqtr3i | ⊢ ( ∅ ∪ 𝐻 ) = 𝐻 |
| 18 | 14 17 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐺 ∪ 𝐻 ) = 𝐻 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) = ( 𝑁 ‘ 𝐻 ) ) |
| 20 | 12 19 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ 𝐻 ) ) |
| 21 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
| 22 | 3 11 21 | mrissd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ⊆ 𝑋 ) |
| 23 | 22 | unssbd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ 𝑋 ) |
| 24 | 11 2 23 | mrcssidd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ ( 𝑁 ‘ 𝐻 ) ) |
| 25 | 20 24 | unssd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ⊆ ( 𝑁 ‘ 𝐻 ) ) |
| 26 | ssun2 | ⊢ 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) | |
| 27 | 26 | a1i | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) ) |
| 28 | 11 2 3 25 27 21 | mrissmrcd | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) = 𝐻 ) |
| 29 | ssequn1 | ⊢ ( 𝐹 ⊆ 𝐻 ↔ ( 𝐹 ∪ 𝐻 ) = 𝐻 ) | |
| 30 | 28 29 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ 𝐻 ) |
| 31 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
| 32 | 30 31 | ssind | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝐻 ∩ ( 𝑋 ∖ 𝐻 ) ) ) |
| 33 | disjdif | ⊢ ( 𝐻 ∩ ( 𝑋 ∖ 𝐻 ) ) = ∅ | |
| 34 | 32 33 | sseqtrdi | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ∅ ) |
| 35 | ss0b | ⊢ ( 𝐹 ⊆ ∅ ↔ 𝐹 = ∅ ) | |
| 36 | 34 35 | sylib | ⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 = ∅ ) |
| 37 | 10 36 9 | mpjaodan | ⊢ ( 𝜑 → 𝐹 = ∅ ) |
| 38 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐺 | |
| 39 | 37 38 | eqeltrdi | ⊢ ( 𝜑 → 𝐹 ∈ 𝒫 𝐺 ) |
| 40 | 1 | elfvexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 41 | 5 | difss2d | ⊢ ( 𝜑 → 𝐹 ⊆ 𝑋 ) |
| 42 | 40 41 | ssexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 43 | enrefg | ⊢ ( 𝐹 ∈ V → 𝐹 ≈ 𝐹 ) | |
| 44 | 42 43 | syl | ⊢ ( 𝜑 → 𝐹 ≈ 𝐹 ) |
| 45 | breq2 | ⊢ ( 𝑖 = 𝐹 → ( 𝐹 ≈ 𝑖 ↔ 𝐹 ≈ 𝐹 ) ) | |
| 46 | uneq1 | ⊢ ( 𝑖 = 𝐹 → ( 𝑖 ∪ 𝐻 ) = ( 𝐹 ∪ 𝐻 ) ) | |
| 47 | 46 | eleq1d | ⊢ ( 𝑖 = 𝐹 → ( ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ↔ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 48 | 45 47 | anbi12d | ⊢ ( 𝑖 = 𝐹 → ( ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ↔ ( 𝐹 ≈ 𝐹 ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
| 49 | 48 | rspcev | ⊢ ( ( 𝐹 ∈ 𝒫 𝐺 ∧ ( 𝐹 ≈ 𝐹 ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| 50 | 39 44 8 49 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ) |