This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difun1 | ⊢ ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) | |
| 2 | invdif | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) | |
| 3 | 1 2 | eqtr3i | ⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) |
| 4 | undm | ⊢ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) | |
| 5 | 4 | ineq2i | ⊢ ( 𝐴 ∩ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) |
| 6 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) | |
| 7 | 5 6 | eqtr3i | ⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) |
| 8 | 3 7 | eqtr3i | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) |
| 9 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 10 | 9 | difeq1i | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) |
| 11 | 8 10 | eqtr3i | ⊢ ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) |