This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if F and G are disjoint from H , ( F u. H ) is independent, F is contained in the closure of ( G u. H ) , and either F or G is finite, then there is a subset q of G equinumerous to F such that ( q u. H ) is independent. This implies the case of Proposition 4.2.1 in FaureFrolicher p. 86 where either ( A \ B ) or ( B \ A ) is finite. The theorem is proven by induction using mreexexlem3d for the base case and mreexexlem4d for the induction step. (Contributed by David Moews, 1-May-2017) Remove dependencies on ax-rep and ax-ac2 . (Revised by Brendan Leahy, 2-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | ||
| mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | ||
| mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | ||
| mreexexd.9 | ⊢ ( 𝜑 → ( 𝐹 ∈ Fin ∨ 𝐺 ∈ Fin ) ) | ||
| Assertion | mreexexd | ⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑞 ∧ ( 𝑞 ∪ 𝐻 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlem2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexexlem2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexexlem2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexexlem2d.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexexlem2d.5 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 6 | mreexexlem2d.6 | ⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) | |
| 7 | mreexexlem2d.7 | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) | |
| 8 | mreexexlem2d.8 | ⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) | |
| 9 | mreexexd.9 | ⊢ ( 𝜑 → ( 𝐹 ∈ Fin ∨ 𝐺 ∈ Fin ) ) | |
| 10 | 1 | elfvexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 11 | exmid | ⊢ ( 𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin ) | |
| 12 | ficardid | ⊢ ( 𝐹 ∈ Fin → ( card ‘ 𝐹 ) ≈ 𝐹 ) | |
| 13 | 12 | ensymd | ⊢ ( 𝐹 ∈ Fin → 𝐹 ≈ ( card ‘ 𝐹 ) ) |
| 14 | iftrue | ⊢ ( 𝐹 ∈ Fin → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐹 ) ) | |
| 15 | 13 14 | breqtrrd | ⊢ ( 𝐹 ∈ Fin → 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝐹 ∈ Fin → 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
| 17 | 9 | orcanai | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ∈ Fin ) |
| 18 | ficardid | ⊢ ( 𝐺 ∈ Fin → ( card ‘ 𝐺 ) ≈ 𝐺 ) | |
| 19 | 18 | ensymd | ⊢ ( 𝐺 ∈ Fin → 𝐺 ≈ ( card ‘ 𝐺 ) ) |
| 20 | 17 19 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ≈ ( card ‘ 𝐺 ) ) |
| 21 | iffalse | ⊢ ( ¬ 𝐹 ∈ Fin → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐺 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐺 ) ) |
| 23 | 20 22 | breqtrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) |
| 24 | 23 | ex | ⊢ ( 𝜑 → ( ¬ 𝐹 ∈ Fin → 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
| 25 | 16 24 | orim12d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin ) → ( 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) ) |
| 26 | 11 25 | mpi | ⊢ ( 𝜑 → ( 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
| 27 | ficardom | ⊢ ( 𝐹 ∈ Fin → ( card ‘ 𝐹 ) ∈ ω ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ Fin ) → ( card ‘ 𝐹 ) ∈ ω ) |
| 29 | ficardom | ⊢ ( 𝐺 ∈ Fin → ( card ‘ 𝐺 ) ∈ ω ) | |
| 30 | 17 29 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → ( card ‘ 𝐺 ) ∈ ω ) |
| 31 | 28 30 | ifclda | ⊢ ( 𝜑 → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∈ ω ) |
| 32 | breq2 | ⊢ ( 𝑙 = ∅ → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ ∅ ) ) | |
| 33 | breq2 | ⊢ ( 𝑙 = ∅ → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ ∅ ) ) | |
| 34 | 32 33 | orbi12d | ⊢ ( 𝑙 = ∅ → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ) ) |
| 35 | 34 | 3anbi1d | ⊢ ( 𝑙 = ∅ → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 36 | 35 | imbi1d | ⊢ ( 𝑙 = ∅ → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 37 | 36 | 2ralbidv | ⊢ ( 𝑙 = ∅ → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 38 | 37 | albidv | ⊢ ( 𝑙 = ∅ → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑙 = ∅ → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 40 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ 𝑘 ) ) | |
| 41 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ 𝑘 ) ) | |
| 42 | 40 41 | orbi12d | ⊢ ( 𝑙 = 𝑘 → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ) ) |
| 43 | 42 | 3anbi1d | ⊢ ( 𝑙 = 𝑘 → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 44 | 43 | imbi1d | ⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 45 | 44 | 2ralbidv | ⊢ ( 𝑙 = 𝑘 → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 46 | 45 | albidv | ⊢ ( 𝑙 = 𝑘 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 47 | 46 | imbi2d | ⊢ ( 𝑙 = 𝑘 → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 48 | breq2 | ⊢ ( 𝑙 = suc 𝑘 → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ suc 𝑘 ) ) | |
| 49 | breq2 | ⊢ ( 𝑙 = suc 𝑘 → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ suc 𝑘 ) ) | |
| 50 | 48 49 | orbi12d | ⊢ ( 𝑙 = suc 𝑘 → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ) ) |
| 51 | 50 | 3anbi1d | ⊢ ( 𝑙 = suc 𝑘 → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 52 | 51 | imbi1d | ⊢ ( 𝑙 = suc 𝑘 → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 53 | 52 | 2ralbidv | ⊢ ( 𝑙 = suc 𝑘 → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 54 | 53 | albidv | ⊢ ( 𝑙 = suc 𝑘 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 55 | 54 | imbi2d | ⊢ ( 𝑙 = suc 𝑘 → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 56 | breq2 | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) | |
| 57 | breq2 | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) | |
| 58 | 56 57 | orbi12d | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) ) |
| 59 | 58 | 3anbi1d | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 60 | 59 | imbi1d | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 61 | 60 | 2ralbidv | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 62 | 61 | albidv | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 63 | 62 | imbi2d | ⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 64 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 65 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 66 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) | |
| 67 | 66 | elpwid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑋 ∖ ℎ ) ) |
| 68 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) | |
| 69 | 68 | elpwid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ⊆ ( 𝑋 ∖ ℎ ) ) |
| 70 | simpr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) | |
| 71 | simpr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) | |
| 72 | simpr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ) | |
| 73 | en0 | ⊢ ( 𝑓 ≈ ∅ ↔ 𝑓 = ∅ ) | |
| 74 | en0 | ⊢ ( 𝑔 ≈ ∅ ↔ 𝑔 = ∅ ) | |
| 75 | 73 74 | orbi12i | ⊢ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ↔ ( 𝑓 = ∅ ∨ 𝑔 = ∅ ) ) |
| 76 | 72 75 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 = ∅ ∨ 𝑔 = ∅ ) ) |
| 77 | 64 2 3 65 67 69 70 71 76 | mreexexlem3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
| 78 | 77 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) → ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 79 | 78 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 80 | 79 | alrimiv | ⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 81 | nfv | ⊢ Ⅎ ℎ 𝜑 | |
| 82 | nfv | ⊢ Ⅎ ℎ 𝑘 ∈ ω | |
| 83 | nfa1 | ⊢ Ⅎ ℎ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) | |
| 84 | 81 82 83 | nf3an | ⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 85 | nfv | ⊢ Ⅎ 𝑓 𝜑 | |
| 86 | nfv | ⊢ Ⅎ 𝑓 𝑘 ∈ ω | |
| 87 | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) | |
| 88 | 87 | nfal | ⊢ Ⅎ 𝑓 ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
| 89 | 85 86 88 | nf3an | ⊢ Ⅎ 𝑓 ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 90 | nfv | ⊢ Ⅎ 𝑔 𝜑 | |
| 91 | nfv | ⊢ Ⅎ 𝑔 𝑘 ∈ ω | |
| 92 | nfra2w | ⊢ Ⅎ 𝑔 ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) | |
| 93 | 92 | nfal | ⊢ Ⅎ 𝑔 ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
| 94 | 90 91 93 | nf3an | ⊢ Ⅎ 𝑔 ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 95 | nfv | ⊢ Ⅎ 𝑔 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) | |
| 96 | 94 95 | nfan | ⊢ Ⅎ 𝑔 ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
| 97 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 98 | 97 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 99 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 100 | 99 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 101 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) | |
| 102 | 101 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑋 ∖ ℎ ) ) |
| 103 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) | |
| 104 | 103 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ⊆ ( 𝑋 ∖ ℎ ) ) |
| 105 | simpr2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) | |
| 106 | simpr3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) | |
| 107 | simpll2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑘 ∈ ω ) | |
| 108 | simpll3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) | |
| 109 | simpr1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ) | |
| 110 | 98 2 3 100 102 104 105 106 107 108 109 | mreexexlem4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
| 111 | 110 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) → ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 112 | 111 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) → ( 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) → ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 113 | 96 112 | ralrimi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) → ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 114 | 113 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) → ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 115 | 89 114 | ralrimi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 116 | 84 115 | alrimi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 117 | 116 | 3exp | ⊢ ( 𝜑 → ( 𝑘 ∈ ω → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 118 | 117 | com12 | ⊢ ( 𝑘 ∈ ω → ( 𝜑 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 119 | 118 | a2d | ⊢ ( 𝑘 ∈ ω → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
| 120 | 39 47 55 63 80 119 | finds | ⊢ ( if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∈ ω → ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
| 121 | 31 120 | mpcom | ⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
| 122 | 10 5 6 7 8 26 121 | mreexexlemd | ⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑞 ∧ ( 𝑞 ∪ 𝐻 ) ∈ 𝐼 ) ) |