This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for union of classes. Exercise 8 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unass | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) = ( 𝐴 ∪ ( 𝐵 ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 2 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 3 | 2 | orbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 4 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 4 | orbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∨ 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∨ 𝑥 ∈ 𝐶 ) ) |
| 6 | orass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∨ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) | |
| 7 | 5 6 | bitr2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∨ 𝑥 ∈ 𝐶 ) ) |
| 8 | 1 3 7 | 3bitrri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∨ 𝑥 ∈ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∪ 𝐶 ) ) ) |
| 9 | 8 | uneqri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) = ( 𝐴 ∪ ( 𝐵 ∪ 𝐶 ) ) |