This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdifin0 | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐶 ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐶 ) → ( 𝐴 ∩ 𝐶 ) ⊆ ( ( 𝐵 ∖ 𝐶 ) ∩ 𝐶 ) ) | |
| 2 | disjdifr | ⊢ ( ( 𝐵 ∖ 𝐶 ) ∩ 𝐶 ) = ∅ | |
| 3 | sseq0 | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ⊆ ( ( 𝐵 ∖ 𝐶 ) ∩ 𝐶 ) ∧ ( ( 𝐵 ∖ 𝐶 ) ∩ 𝐶 ) = ∅ ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐶 ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) |