This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set A is equinumerous to the successor of a natural number M , then A with an element removed is equinumerous to M . See also dif1ennnALT . (Contributed by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1ennn | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝑀 ∈ ω → 𝑀 ∈ On ) | |
| 2 | dif1en | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |