This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Revised to shorten 3ancoma by Wolf Lammen, 5-Jun-2022.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3anan12 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 2 | an12 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ) |