This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgsubst . (Contributed by Mario Carneiro, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubst.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| itgsubst.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| itgsubst.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| itgsubst.z | ⊢ ( 𝜑 → 𝑍 ∈ ℝ* ) | ||
| itgsubst.w | ⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) | ||
| itgsubst.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | ||
| itgsubst.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | ||
| itgsubst.c | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | ||
| itgsubst.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | ||
| itgsubst.e | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | ||
| itgsubst.k | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | ||
| itgsubst.l | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | ||
| itgsubst.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 (,) 𝑊 ) ) | ||
| itgsubst.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 (,) 𝑊 ) ) | ||
| itgsubst.cl2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑀 (,) 𝑁 ) ) | ||
| Assertion | itgsubstlem | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubst.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | itgsubst.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | itgsubst.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 4 | itgsubst.z | ⊢ ( 𝜑 → 𝑍 ∈ ℝ* ) | |
| 5 | itgsubst.w | ⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) | |
| 6 | itgsubst.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | |
| 7 | itgsubst.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | |
| 8 | itgsubst.c | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | |
| 9 | itgsubst.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 10 | itgsubst.e | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | |
| 11 | itgsubst.k | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | |
| 12 | itgsubst.l | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | |
| 13 | itgsubst.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 14 | itgsubst.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 15 | itgsubst.cl2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑀 (,) 𝑁 ) ) | |
| 16 | 3 | ditgpos | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 17 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 19 | iccssre | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 20 | 1 2 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 21 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) | |
| 22 | eqidd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) | |
| 23 | oveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝑀 (,) 𝑣 ) = ( 𝑀 (,) 𝐴 ) ) | |
| 24 | itgeq1 | ⊢ ( ( 𝑀 (,) 𝑣 ) = ( 𝑀 (,) 𝐴 ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑣 = 𝐴 → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
| 26 | 15 21 22 25 | fmptco | ⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
| 27 | 15 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) |
| 28 | ioossicc | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 29 | eliooord | ⊢ ( 𝑀 ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < 𝑀 ∧ 𝑀 < 𝑊 ) ) | |
| 30 | 13 29 | syl | ⊢ ( 𝜑 → ( 𝑍 < 𝑀 ∧ 𝑀 < 𝑊 ) ) |
| 31 | 30 | simpld | ⊢ ( 𝜑 → 𝑍 < 𝑀 ) |
| 32 | eliooord | ⊢ ( 𝑁 ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < 𝑁 ∧ 𝑁 < 𝑊 ) ) | |
| 33 | 14 32 | syl | ⊢ ( 𝜑 → ( 𝑍 < 𝑁 ∧ 𝑁 < 𝑊 ) ) |
| 34 | 33 | simprd | ⊢ ( 𝜑 → 𝑁 < 𝑊 ) |
| 35 | iccssioo | ⊢ ( ( ( 𝑍 ∈ ℝ* ∧ 𝑊 ∈ ℝ* ) ∧ ( 𝑍 < 𝑀 ∧ 𝑁 < 𝑊 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) | |
| 36 | 4 5 31 34 35 | syl22anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) |
| 37 | 28 36 | sstrid | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) |
| 38 | ioossre | ⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℝ | |
| 39 | 38 | a1i | ⊢ ( 𝜑 → ( 𝑍 (,) 𝑊 ) ⊆ ℝ ) |
| 40 | 39 17 | sstrdi | ⊢ ( 𝜑 → ( 𝑍 (,) 𝑊 ) ⊆ ℂ ) |
| 41 | 37 40 | sstrd | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
| 42 | cncfcdm | ⊢ ( ( ( 𝑀 (,) 𝑁 ) ⊆ ℂ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) | |
| 43 | 41 6 42 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) |
| 44 | 27 43 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ) |
| 45 | 28 | sseli | ⊢ ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) → 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 46 | 38 14 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 47 | 46 | rexrd | ⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 49 | 38 13 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 50 | elicc2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) ) | |
| 51 | 49 46 50 | syl2anc | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) ) |
| 52 | 51 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) |
| 53 | 52 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑣 ≤ 𝑁 ) |
| 54 | iooss2 | ⊢ ( ( 𝑁 ∈ ℝ* ∧ 𝑣 ≤ 𝑁 ) → ( 𝑀 (,) 𝑣 ) ⊆ ( 𝑀 (,) 𝑁 ) ) | |
| 55 | 48 53 54 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑀 (,) 𝑣 ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 56 | 55 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) |
| 57 | 37 | sselda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 58 | cncff | ⊢ ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) | |
| 59 | 8 58 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) |
| 60 | 59 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) → 𝐶 ∈ ℂ ) |
| 61 | 57 60 | syldan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 63 | 56 62 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → 𝐶 ∈ ℂ ) |
| 64 | ioombl | ⊢ ( 𝑀 (,) 𝑣 ) ∈ dom vol | |
| 65 | 64 | a1i | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑀 (,) 𝑣 ) ∈ dom vol ) |
| 66 | 28 | a1i | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 67 | ioombl | ⊢ ( 𝑀 (,) 𝑁 ) ∈ dom vol | |
| 68 | 67 | a1i | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ∈ dom vol ) |
| 69 | 36 | sselda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 70 | 69 60 | syldan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 71 | 36 | resmptd | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ) |
| 72 | rescncf | ⊢ ( ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) | |
| 73 | 36 8 72 | sylc | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
| 74 | 71 73 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
| 75 | cniccibl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 76 | 49 46 74 75 | syl3anc | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 77 | 66 68 70 76 | iblss | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 79 | 55 65 62 78 | iblss | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 80 | 63 79 | itgcl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ∈ ℂ ) |
| 81 | 45 80 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ∈ ℂ ) |
| 82 | 81 | fmpttd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
| 83 | 37 38 | sstrdi | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) |
| 84 | fveq2 | ⊢ ( 𝑡 = 𝑢 → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) = ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) ) | |
| 85 | nffvmpt1 | ⊢ Ⅎ 𝑢 ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) | |
| 86 | nfcv | ⊢ Ⅎ 𝑡 ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) | |
| 87 | 84 85 86 | cbvitg | ⊢ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) d 𝑢 |
| 88 | eqid | ⊢ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) | |
| 89 | 88 | fvmpt2 | ⊢ ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) = 𝐶 ) |
| 90 | 56 63 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) = 𝐶 ) |
| 91 | 90 | itgeq2dv | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) d 𝑢 = ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) |
| 92 | 87 91 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) |
| 93 | 92 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) |
| 94 | 93 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) ) |
| 95 | eqid | ⊢ ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) | |
| 96 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 97 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 98 | lbicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 99 | 96 97 3 98 | syl3anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 100 | n0i | ⊢ ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) → ¬ ( 𝑋 [,] 𝑌 ) = ∅ ) | |
| 101 | 99 100 | syl | ⊢ ( 𝜑 → ¬ ( 𝑋 [,] 𝑌 ) = ∅ ) |
| 102 | feq3 | ⊢ ( ( 𝑀 (,) 𝑁 ) = ∅ → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) | |
| 103 | 27 102 | syl5ibcom | ⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) |
| 104 | f00 | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ∅ ∧ ( 𝑋 [,] 𝑌 ) = ∅ ) ) | |
| 105 | 104 | simprbi | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ → ( 𝑋 [,] 𝑌 ) = ∅ ) |
| 106 | 103 105 | syl6 | ⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ → ( 𝑋 [,] 𝑌 ) = ∅ ) ) |
| 107 | 101 106 | mtod | ⊢ ( 𝜑 → ¬ ( 𝑀 (,) 𝑁 ) = ∅ ) |
| 108 | 49 | rexrd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 109 | ioo0 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( ( 𝑀 (,) 𝑁 ) = ∅ ↔ 𝑁 ≤ 𝑀 ) ) | |
| 110 | 108 47 109 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ ↔ 𝑁 ≤ 𝑀 ) ) |
| 111 | 107 110 | mtbid | ⊢ ( 𝜑 → ¬ 𝑁 ≤ 𝑀 ) |
| 112 | 46 49 | letrid | ⊢ ( 𝜑 → ( 𝑁 ≤ 𝑀 ∨ 𝑀 ≤ 𝑁 ) ) |
| 113 | 112 | ord | ⊢ ( 𝜑 → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 114 | 111 113 | mpd | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 115 | resmpt | ⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) | |
| 116 | 28 115 | ax-mp | ⊢ ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) |
| 117 | rescncf | ⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) ) | |
| 118 | 28 74 117 | mpsyl | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
| 119 | 116 118 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
| 120 | 95 49 46 114 119 77 | ftc1cn | ⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
| 121 | 36 38 | sstrdi | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 122 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 123 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 124 | iccntr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) | |
| 125 | 49 46 124 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 126 | 18 121 80 122 123 125 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) ) |
| 127 | 94 120 126 | 3eqtr3rd | ⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
| 128 | 127 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = dom ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
| 129 | 88 61 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑀 (,) 𝑁 ) ) |
| 130 | 128 129 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 131 | dvcn | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑀 (,) 𝑁 ) ) → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) | |
| 132 | 18 82 83 130 131 | syl31anc | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
| 133 | 44 132 | cncfco | ⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
| 134 | 26 133 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
| 135 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 136 | 134 135 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 137 | 136 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ∈ ℂ ) |
| 138 | iccntr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) | |
| 139 | 1 2 138 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
| 140 | 18 20 137 122 123 139 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ) |
| 141 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 142 | 141 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 143 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 144 | 143 | sseli | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 145 | 144 15 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝑀 (,) 𝑁 ) ) |
| 146 | elin | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ↔ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) ) | |
| 147 | 7 146 | sylib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) ) |
| 148 | 147 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 149 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | |
| 150 | 148 149 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
| 151 | 150 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐵 ∈ ℂ ) |
| 152 | 61 | fmpttd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
| 153 | nfcv | ⊢ Ⅎ 𝑣 𝐶 | |
| 154 | nfcsb1v | ⊢ Ⅎ 𝑢 ⦋ 𝑣 / 𝑢 ⦌ 𝐶 | |
| 155 | csbeq1a | ⊢ ( 𝑢 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) | |
| 156 | 153 154 155 | cbvmpt | ⊢ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) |
| 157 | 156 | fmpt | ⊢ ( ∀ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ↔ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
| 158 | 152 157 | sylibr | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ) |
| 159 | 158 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ) |
| 160 | 38 17 | sstri | ⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℂ |
| 161 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | |
| 162 | 6 161 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 163 | 162 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 164 | 160 163 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ℂ ) |
| 165 | 18 20 164 122 123 139 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) ) |
| 166 | 165 9 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
| 167 | 127 156 | eqtrdi | ⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) ) |
| 168 | csbeq1 | ⊢ ( 𝑣 = 𝐴 → ⦋ 𝑣 / 𝑢 ⦌ 𝐶 = ⦋ 𝐴 / 𝑢 ⦌ 𝐶 ) | |
| 169 | 142 142 145 151 81 159 166 167 25 168 | dvmptco | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) ) ) |
| 170 | nfcvd | ⊢ ( 𝐴 ∈ ( 𝑀 (,) 𝑁 ) → Ⅎ 𝑢 𝐸 ) | |
| 171 | 170 10 | csbiegf | ⊢ ( 𝐴 ∈ ( 𝑀 (,) 𝑁 ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
| 172 | 145 171 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
| 173 | 172 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) = ( 𝐸 · 𝐵 ) ) |
| 174 | 173 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
| 175 | 140 169 174 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
| 176 | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ) | |
| 177 | 143 176 | ax-mp | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) |
| 178 | eqidd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ) | |
| 179 | 163 21 178 10 | fmptco | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ) |
| 180 | 6 8 | cncfco | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
| 181 | 179 180 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
| 182 | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | |
| 183 | 143 181 182 | mpsyl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 184 | 177 183 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 185 | 184 148 | mulcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 186 | 175 185 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 187 | ioombl | ⊢ ( 𝑋 (,) 𝑌 ) ∈ dom vol | |
| 188 | 187 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ dom vol ) |
| 189 | fco | ⊢ ( ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 190 | 59 162 189 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 191 | 179 | feq1d | ⊢ ( 𝜑 → ( ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ) |
| 192 | 190 191 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 193 | 192 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐸 ∈ ℂ ) |
| 194 | 144 193 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℂ ) |
| 195 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ) | |
| 196 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 197 | 188 194 151 195 196 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
| 198 | 175 197 | eqtr4d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ) |
| 199 | 143 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 200 | cniccibl | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) | |
| 201 | 1 2 181 200 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
| 202 | 199 188 193 201 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
| 203 | iblmbf | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ) | |
| 204 | 202 203 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ) |
| 205 | 147 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) |
| 206 | cniccbdd | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) | |
| 207 | 1 2 181 206 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 208 | ssralv | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) | |
| 209 | 143 208 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 210 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) | |
| 211 | 210 194 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑋 (,) 𝑌 ) ) |
| 212 | 211 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 213 | 177 | fveq1i | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) |
| 214 | fvres | ⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) | |
| 215 | 213 214 | eqtr3id | ⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) |
| 216 | 215 | fveq2d | ⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ) |
| 217 | 216 | breq1d | ⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 218 | 217 | ralbiia | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 219 | 212 218 | bitr2di | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 220 | 209 219 | imbitrid | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 221 | 220 | reximdv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 222 | 207 221 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 223 | bddmulibl | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ∈ 𝐿1 ) | |
| 224 | 204 205 222 223 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ∈ 𝐿1 ) |
| 225 | 198 224 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ∈ 𝐿1 ) |
| 226 | 1 2 3 186 225 134 | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) ) |
| 227 | fveq2 | ⊢ ( 𝑡 = 𝑥 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) = ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) ) | |
| 228 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 229 | nfcv | ⊢ Ⅎ 𝑥 D | |
| 230 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) | |
| 231 | 228 229 230 | nfov | ⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
| 232 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 233 | 231 232 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) |
| 234 | nfcv | ⊢ Ⅎ 𝑡 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) | |
| 235 | 227 233 234 | cbvitg | ⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) d 𝑥 |
| 236 | 175 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) ) |
| 237 | ovex | ⊢ ( 𝐸 · 𝐵 ) ∈ V | |
| 238 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) | |
| 239 | 238 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ∧ ( 𝐸 · 𝐵 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
| 240 | 237 239 | mpan2 | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
| 241 | 236 240 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
| 242 | 241 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 243 | 235 242 | eqtrid | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 244 | 28 15 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 245 | elicc2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) | |
| 246 | 49 46 245 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) |
| 247 | 246 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) |
| 248 | 244 247 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) |
| 249 | 248 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑀 ≤ 𝐴 ) |
| 250 | 249 | ditgpos | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
| 251 | 250 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
| 252 | 251 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) ) |
| 253 | ubicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 254 | 96 97 3 253 | syl3anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 255 | ditgeq2 | ⊢ ( 𝐴 = 𝐿 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) | |
| 256 | 12 255 | syl | ⊢ ( 𝑥 = 𝑌 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
| 257 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) | |
| 258 | ditgex | ⊢ ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ∈ V | |
| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑌 ∈ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
| 260 | 254 259 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
| 261 | 252 260 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
| 262 | 251 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) |
| 263 | ditgeq2 | ⊢ ( 𝐴 = 𝐾 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) | |
| 264 | 11 263 | syl | ⊢ ( 𝑥 = 𝑋 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
| 265 | ditgex | ⊢ ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ∈ V | |
| 266 | 264 257 265 | fvmpt | ⊢ ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
| 267 | 99 266 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
| 268 | 262 267 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
| 269 | 261 268 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) = ( ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) ) |
| 270 | lbicc2 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 271 | 108 47 114 270 | syl3anc | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 272 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ 𝐾 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 273 | 244 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 274 | 272 273 99 | rspcdva | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 275 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ 𝐿 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 276 | 275 273 254 | rspcdva | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 277 | 49 46 271 274 276 61 77 | ditgsplit | ⊢ ( 𝜑 → ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 = ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) ) |
| 278 | 277 | oveq1d | ⊢ ( 𝜑 → ( ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) = ( ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) ) |
| 279 | 49 46 271 274 61 77 | ditgcl | ⊢ ( 𝜑 → ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ∈ ℂ ) |
| 280 | 49 46 274 276 61 77 | ditgcl | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ∈ ℂ ) |
| 281 | 279 280 | pncan2d | ⊢ ( 𝜑 → ( ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 282 | 269 278 281 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 283 | 226 243 282 | 3eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 284 | 16 283 | eqtr2d | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |