This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cniccbdd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 | |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ ) | |
| 4 | 3 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ* ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ* ) |
| 7 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 10 | 9 | raleqdv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ↔ ∀ 𝑦 ∈ ∅ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) ) |
| 11 | 2 10 | mpbiri | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) |
| 12 | brralrspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | |
| 13 | 1 11 12 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 14 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 15 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 17 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 18 | abscncf | ⊢ abs ∈ ( ℂ –cn→ ℝ ) | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → abs ∈ ( ℂ –cn→ ℝ ) ) |
| 20 | 17 19 | cncfco | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 22 | 14 15 16 21 | evthicc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 23 | 22 | simpld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) |
| 24 | cncff | ⊢ ( ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 25 | 20 24 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 27 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 28 | 17 27 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 30 | fvco3 | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 31 | 29 30 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | 31 | breq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
| 33 | 32 | ralbidva | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
| 34 | 33 | biimpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
| 35 | brralrspcev | ⊢ ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | |
| 36 | 26 34 35 | syl6an | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 37 | 36 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 38 | 37 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 39 | 23 38 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 40 | 13 39 5 3 | ltlecasei | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |