This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgeq1 | ⊢ ( 𝐴 = 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) ) ) |
| 3 | 2 | ifbid | ⊢ ( 𝐴 = 𝐵 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 4 | 3 | csbeq2dv | ⊢ ( 𝐴 = 𝐵 → ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 5 | 4 | mpteq2dv | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐴 = 𝐵 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝐴 = 𝐵 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) ) |
| 8 | 7 | sumeq2sdv | ⊢ ( 𝐴 = 𝐵 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) ) |
| 9 | df-itg | ⊢ ∫ 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) | |
| 10 | df-itg | ⊢ ∫ 𝐵 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) | |
| 11 | 8 9 10 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |