This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by u -substitution. If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . In this part of the proof we discharge the assumptions in itgsubstlem , which use the fact that ( Z , W ) is open to shrink the interval a little to ( M , N ) where Z < M < N < W - this is possible because A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubst.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| itgsubst.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| itgsubst.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| itgsubst.z | ⊢ ( 𝜑 → 𝑍 ∈ ℝ* ) | ||
| itgsubst.w | ⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) | ||
| itgsubst.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | ||
| itgsubst.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | ||
| itgsubst.c | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | ||
| itgsubst.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | ||
| itgsubst.e | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | ||
| itgsubst.k | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | ||
| itgsubst.l | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | ||
| Assertion | itgsubst | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubst.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | itgsubst.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | itgsubst.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 4 | itgsubst.z | ⊢ ( 𝜑 → 𝑍 ∈ ℝ* ) | |
| 5 | itgsubst.w | ⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) | |
| 6 | itgsubst.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | |
| 7 | itgsubst.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | |
| 8 | itgsubst.c | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | |
| 9 | itgsubst.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 10 | itgsubst.e | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | |
| 11 | itgsubst.k | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | |
| 12 | itgsubst.l | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | |
| 13 | ioossre | ⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℝ | |
| 14 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 15 | cncfss | ⊢ ( ( ( 𝑍 (,) 𝑊 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | |
| 16 | 13 14 15 | mp2an | ⊢ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) |
| 17 | 16 6 | sselid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 18 | 1 2 3 17 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 19 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 20 | 13 19 | sstri | ⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℝ* |
| 21 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 25 | 23 24 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 26 | 20 25 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 27 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑊 ∈ ℝ* ) |
| 28 | eliooord | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) ) | |
| 29 | 25 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) ) |
| 30 | 29 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) |
| 31 | qbtwnxr | ⊢ ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ∧ 𝑊 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) → ∃ 𝑛 ∈ ℚ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) | |
| 32 | 26 27 30 31 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℚ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) |
| 33 | qre | ⊢ ( 𝑛 ∈ ℚ → 𝑛 ∈ ℝ ) | |
| 34 | 33 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ ) |
| 35 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑍 ∈ ℝ* ) |
| 36 | 26 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 37 | 34 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ* ) |
| 38 | 29 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 40 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) | |
| 41 | 35 36 37 39 40 | xrlttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑍 < 𝑛 ) |
| 42 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑛 < 𝑊 ) | |
| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑊 ∈ ℝ* ) |
| 44 | elioo2 | ⊢ ( ( 𝑍 ∈ ℝ* ∧ 𝑊 ∈ ℝ* ) → ( 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑛 ∈ ℝ ∧ 𝑍 < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) | |
| 45 | 35 43 44 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑛 ∈ ℝ ∧ 𝑍 < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) |
| 46 | 34 41 42 45 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 47 | anass | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) | |
| 48 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) | |
| 49 | 48 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) |
| 50 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 51 | 50 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 52 | 20 51 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ) |
| 53 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 54 | 50 53 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 55 | 20 54 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 56 | 55 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 57 | 33 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ ) |
| 58 | 57 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ ) |
| 59 | 58 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ* ) |
| 60 | xrlelttr | ⊢ ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ∧ 𝑛 ∈ ℝ* ) → ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) | |
| 61 | 52 56 59 60 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) |
| 62 | 49 61 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) |
| 63 | 62 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) |
| 65 | 64 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) |
| 66 | 47 65 | sylanbr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ∧ 𝑛 < 𝑊 ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) |
| 67 | 32 46 66 | reximssdv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) |
| 68 | 67 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) |
| 69 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑍 ∈ ℝ* ) |
| 70 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 71 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 72 | 70 71 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 73 | 20 72 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 74 | 72 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) ) |
| 75 | 74 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 76 | qbtwnxr | ⊢ ( ( 𝑍 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ∧ 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) → ∃ 𝑚 ∈ ℚ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) | |
| 77 | 69 73 75 76 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ∃ 𝑚 ∈ ℚ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) |
| 78 | qre | ⊢ ( 𝑚 ∈ ℚ → 𝑚 ∈ ℝ ) | |
| 79 | 78 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ ) |
| 80 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑍 < 𝑚 ) | |
| 81 | 79 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ* ) |
| 82 | 73 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 83 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑊 ∈ ℝ* ) |
| 84 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) | |
| 85 | 74 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) |
| 86 | 85 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) |
| 87 | 81 82 83 84 86 | xrlttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < 𝑊 ) |
| 88 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑍 ∈ ℝ* ) |
| 89 | elioo2 | ⊢ ( ( 𝑍 ∈ ℝ* ∧ 𝑊 ∈ ℝ* ) → ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑍 < 𝑚 ∧ 𝑚 < 𝑊 ) ) ) | |
| 90 | 88 83 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑍 < 𝑚 ∧ 𝑚 < 𝑊 ) ) ) |
| 91 | 79 80 87 90 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 92 | anass | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ) | |
| 93 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) | |
| 94 | 93 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 95 | 78 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ ) |
| 96 | 95 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ ) |
| 97 | 96 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ* ) |
| 98 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 99 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 100 | 98 99 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 101 | 20 100 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ) |
| 103 | 98 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 104 | 20 103 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ) |
| 105 | xrltletr | ⊢ ( ( 𝑚 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) | |
| 106 | 97 102 104 105 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 107 | 94 106 | mpand | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 108 | 107 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 109 | 108 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) |
| 110 | 109 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) |
| 111 | 92 110 | sylanbr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚 ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) |
| 112 | 77 91 111 | reximssdv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) |
| 113 | 112 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 114 | ancom | ⊢ ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) | |
| 115 | reeanv | ⊢ ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) | |
| 116 | 114 115 | bitr4i | ⊢ ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) |
| 117 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) | |
| 118 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
| 119 | 118 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) ) |
| 120 | 13 119 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ) |
| 121 | 120 | 3biant1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) ) |
| 122 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 123 | 20 122 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ* ) |
| 124 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 125 | 20 124 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ* ) |
| 126 | elioo2 | ⊢ ( ( 𝑚 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) ) | |
| 127 | 123 125 126 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) ) |
| 128 | 121 127 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 129 | 128 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 130 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) | |
| 131 | 130 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) |
| 132 | nfv | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) | |
| 133 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ) | |
| 134 | 133 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 135 | 131 132 134 | cbvralw | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ) |
| 136 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 137 | 22 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 138 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) | |
| 139 | 138 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 140 | 136 137 139 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 141 | 140 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 142 | 141 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 143 | 135 142 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 144 | 143 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 145 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑋 ∈ ℝ ) |
| 146 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑌 ∈ ℝ ) |
| 147 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑋 ≤ 𝑌 ) |
| 148 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑍 ∈ ℝ* ) |
| 149 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑊 ∈ ℝ* ) |
| 150 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 151 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 | |
| 152 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 153 | 150 151 152 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 154 | 153 6 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) |
| 155 | 154 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) |
| 156 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 157 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 158 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 159 | 156 157 158 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 160 | 159 7 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
| 161 | 160 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
| 162 | nfcv | ⊢ Ⅎ 𝑣 𝐶 | |
| 163 | nfcsb1v | ⊢ Ⅎ 𝑢 ⦋ 𝑣 / 𝑢 ⦌ 𝐶 | |
| 164 | csbeq1a | ⊢ ( 𝑢 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) | |
| 165 | 162 163 164 | cbvmpt | ⊢ ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) = ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) |
| 166 | 165 8 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) |
| 167 | 166 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) |
| 168 | 153 | oveq2i | ⊢ ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 169 | 9 168 159 | 3eqtr3g | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 170 | 169 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 171 | csbeq1 | ⊢ ( 𝑣 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 → ⦋ 𝑣 / 𝑢 ⦌ 𝐶 = ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 ) | |
| 172 | csbeq1 | ⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) | |
| 173 | csbeq1 | ⊢ ( 𝑦 = 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) | |
| 174 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 175 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) | |
| 176 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) | |
| 177 | 151 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) |
| 178 | 152 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 179 | 177 178 | rspc | ⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) |
| 180 | 176 179 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) |
| 181 | 145 146 147 148 149 155 161 167 170 171 172 173 174 175 180 | itgsubstlem | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] ⦋ 𝑣 / 𝑢 ⦌ 𝐶 d 𝑣 = ⨜ [ 𝑋 → 𝑌 ] ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 182 | 164 162 163 | cbvditg | ⊢ ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] ⦋ 𝑣 / 𝑢 ⦌ 𝐶 d 𝑣 |
| 183 | nfcvd | ⊢ ( 𝑋 ∈ ℝ → Ⅎ 𝑥 𝐾 ) | |
| 184 | 183 11 | csbiegf | ⊢ ( 𝑋 ∈ ℝ → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐾 ) |
| 185 | ditgeq1 | ⊢ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐾 → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 ) | |
| 186 | 1 184 185 | 3syl | ⊢ ( 𝜑 → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 ) |
| 187 | nfcvd | ⊢ ( 𝑌 ∈ ℝ → Ⅎ 𝑥 𝐿 ) | |
| 188 | 187 12 | csbiegf | ⊢ ( 𝑌 ∈ ℝ → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 = 𝐿 ) |
| 189 | ditgeq2 | ⊢ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 = 𝐿 → ⨜ [ 𝐾 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) | |
| 190 | 2 188 189 | 3syl | ⊢ ( 𝜑 → ⨜ [ 𝐾 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 191 | 186 190 | eqtrd | ⊢ ( 𝜑 → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 192 | 182 191 | eqtr3id | ⊢ ( 𝜑 → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] ⦋ 𝑣 / 𝑢 ⦌ 𝐶 d 𝑣 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 193 | 192 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ] ⦋ 𝑣 / 𝑢 ⦌ 𝐶 d 𝑣 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 194 | 152 | csbeq1d | ⊢ ( 𝑥 = 𝑦 → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 ) |
| 195 | 194 158 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) = ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 196 | nfcv | ⊢ Ⅎ 𝑦 ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) | |
| 197 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 198 | 151 197 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 |
| 199 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 200 | 198 199 157 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 201 | 195 196 200 | cbvditg | ⊢ ⨜ [ 𝑋 → 𝑌 ] ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) d 𝑥 = ⨜ [ 𝑋 → 𝑌 ] ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 |
| 202 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 203 | 202 | sseli | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 204 | 203 137 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) |
| 205 | nfcvd | ⊢ ( 𝐴 ∈ ( 𝑍 (,) 𝑊 ) → Ⅎ 𝑢 𝐸 ) | |
| 206 | 205 10 | csbiegf | ⊢ ( 𝐴 ∈ ( 𝑍 (,) 𝑊 ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
| 207 | 204 206 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
| 208 | 207 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) = ( 𝐸 · 𝐵 ) ) |
| 209 | 208 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 210 | 3 | ditgpos | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) d 𝑥 ) |
| 211 | 3 | ditgpos | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 212 | 209 210 211 | 3eqtr4d | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) d 𝑥 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 213 | 201 212 | eqtr3id | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 214 | 213 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝑋 → 𝑌 ] ( ⦋ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 / 𝑢 ⦌ 𝐶 · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 215 | 181 193 214 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 216 | 215 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 217 | 144 216 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 218 | 129 217 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 219 | 117 218 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 220 | 219 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 221 | 116 220 | biimtrid | ⊢ ( 𝜑 → ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 222 | 68 113 221 | syl2and | ⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) ) |
| 223 | 18 222 | mpd | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |