This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Fundamental Theorem of Calculus, part two. If F is a function continuous on [ A , B ] and continuously differentiable on ( A , B ) , then the integral of the derivative of F is equal to F ( B ) - F ( A ) . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ftc2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc2.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc2.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | ||
| ftc2.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | ||
| ftc2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | ||
| Assertion | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ftc2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ftc2.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ftc2.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 5 | ftc2.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | |
| 6 | ftc2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 7 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 8 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 9 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 10 | 7 8 3 9 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 11 | fvex | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ∈ V | |
| 12 | 11 | fvconst2 | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
| 14 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 15 | 14 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) | |
| 18 | ssidd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 19 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 21 | cncff | ⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 23 | 17 1 2 3 18 20 5 22 | ftc1a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 24 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 25 | 6 24 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 26 | 25 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | 26 6 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 28 | 14 16 23 27 | cncfmpt2f | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 29 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 31 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 32 | 1 2 31 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 33 | fvex | ⊢ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V | |
| 34 | 33 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
| 35 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 36 | 35 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 37 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 39 | 38 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 40 | 39 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 41 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵 ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 42 | 36 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 43 | ioombl | ⊢ ( 𝐴 (,) 𝑥 ) ∈ dom vol | |
| 44 | 43 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ∈ dom vol ) |
| 45 | 33 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
| 46 | 22 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 47 | 46 5 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 49 | 42 44 45 48 | iblss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 50 | 34 49 | itgcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 51 | 25 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 52 | 50 51 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 53 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 54 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 55 | 1 2 54 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 56 | 30 32 52 53 14 55 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 57 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 58 | 57 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 59 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 60 | 59 | sseli | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 61 | 60 50 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 62 | 22 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 63 | 17 1 2 3 4 5 | ftc1cn | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D 𝐹 ) ) |
| 64 | 30 32 50 53 14 55 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) ) |
| 65 | 22 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 66 | 63 64 65 | 3eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 67 | 60 51 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 68 | 30 32 51 53 14 55 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 69 | 26 | oveq2d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 70 | 69 65 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 71 | 68 70 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 72 | 58 61 62 66 67 62 71 | dvmptsub | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 73 | 62 | subidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = 0 ) |
| 74 | 73 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 75 | 56 72 74 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 76 | fconstmpt | ⊢ ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) | |
| 77 | 75 76 | eqtr4di | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) |
| 78 | 1 2 28 77 | dveq0 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ) |
| 79 | 78 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) ) |
| 80 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 81 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐵 ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) | |
| 82 | 80 81 | syl | ⊢ ( 𝑥 = 𝐵 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 83 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 84 | 82 83 | oveq12d | ⊢ ( 𝑥 = 𝐵 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
| 85 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) | |
| 86 | ovex | ⊢ ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ∈ V | |
| 87 | 84 85 86 | fvmpt | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
| 88 | 10 87 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
| 89 | 79 88 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
| 90 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 91 | 7 8 3 90 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 92 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐴 ) ) | |
| 93 | iooid | ⊢ ( 𝐴 (,) 𝐴 ) = ∅ | |
| 94 | 92 93 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 (,) 𝑥 ) = ∅ ) |
| 95 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 ) = ∅ → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) | |
| 96 | 94 95 | syl | ⊢ ( 𝑥 = 𝐴 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 97 | itg0 | ⊢ ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = 0 | |
| 98 | 96 97 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = 0 ) |
| 99 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 100 | 98 99 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = ( 0 − ( 𝐹 ‘ 𝐴 ) ) ) |
| 101 | df-neg | ⊢ - ( 𝐹 ‘ 𝐴 ) = ( 0 − ( 𝐹 ‘ 𝐴 ) ) | |
| 102 | 100 101 | eqtr4di | ⊢ ( 𝑥 = 𝐴 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 103 | negex | ⊢ - ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 104 | 102 85 103 | fvmpt | ⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 105 | 91 104 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 106 | 13 89 105 | 3eqtr3d | ⊢ ( 𝜑 → ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 107 | 106 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) = ( ( 𝐹 ‘ 𝐵 ) + - ( 𝐹 ‘ 𝐴 ) ) ) |
| 108 | 25 10 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 109 | 33 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
| 110 | 109 47 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 111 | 108 110 | pncan3d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 112 | 25 91 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 113 | 108 112 | negsubd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + - ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 114 | 107 111 113 | 3eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |