This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgcl.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| ditgcl.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| ditgcl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ditgcl.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ditgcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ 𝑉 ) | ||
| ditgcl.i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | ditgcl | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgcl.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | ditgcl.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | ditgcl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 4 | ditgcl.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 5 | ditgcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ 𝑉 ) | |
| 6 | ditgcl.i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 7 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 9 | 3 8 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
| 10 | 9 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 11 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) | |
| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 13 | 4 12 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
| 14 | 13 | simp1d | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 16 | 15 | ditgpos | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
| 17 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 18 | 9 | simp2d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
| 19 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 21 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 22 | 13 | simp3d | ⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
| 23 | iooss2 | ⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 25 | 20 24 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 26 | 25 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 27 | 26 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
| 28 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 29 | 28 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 30 | 25 29 5 6 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 31 | 27 30 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 33 | 16 32 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) | |
| 35 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 36 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 37 | 34 35 36 | ditgneg | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) |
| 38 | 13 | simp2d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
| 39 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝐴 ) ) | |
| 40 | 17 38 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝐴 ) ) |
| 41 | 9 | simp3d | ⊢ ( 𝜑 → 𝐴 ≤ 𝑌 ) |
| 42 | iooss2 | ⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌 ) → ( 𝑋 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) | |
| 43 | 21 41 42 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 44 | 40 43 | sstrd | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 45 | 44 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 46 | 45 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ) → 𝐶 ∈ 𝑉 ) |
| 47 | ioombl | ⊢ ( 𝐵 (,) 𝐴 ) ∈ dom vol | |
| 48 | 47 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ∈ dom vol ) |
| 49 | 44 48 5 6 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 50 | 46 49 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 51 | 50 | negcld | ⊢ ( 𝜑 → - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 53 | 37 52 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |
| 54 | 10 14 33 53 | lecasei | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |