This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strengthen the assumptions of ftc1 to when the function F is continuous on the entire interval ( A , B ) ; in this case we can calculate _D G exactly. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1cn.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1cn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1cn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1cn.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1cn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | ||
| ftc1cn.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| Assertion | ftc1cn | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1cn.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1cn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1cn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1cn.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1cn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 6 | ftc1cn.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 7 | dvf | ⊢ ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ ) |
| 9 | 8 | ffund | ⊢ ( 𝜑 → Fun ( ℝ D 𝐺 ) ) |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 12 | ssidd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 13 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 15 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 17 | 1 2 3 4 12 14 6 16 | ftc1lem2 | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 18 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 19 | 2 3 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 21 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 22 | 11 17 19 20 21 | dvbssntr | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 23 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 24 | 2 3 23 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 25 | 22 24 | sseqtrd | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 26 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
| 29 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 30 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 31 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ 𝐿1 ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 33 | 13 10 | sstri | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 34 | ssid | ⊢ ℂ ⊆ ℂ | |
| 35 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) | |
| 36 | 21 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 37 | 36 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 38 | 21 35 37 | cncfcn | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 39 | 33 34 38 | mp2an | ⊢ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 40 | 5 39 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 42 | 33 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 43 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) | |
| 44 | 36 42 43 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 45 | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 47 | 46 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) ) |
| 48 | 47 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 49 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) | |
| 50 | 49 | cncnpi | ⊢ ( ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 51 | 41 48 50 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 52 | 1 26 27 28 29 30 31 32 51 20 35 21 | ftc1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) |
| 53 | vex | ⊢ 𝑦 ∈ V | |
| 54 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 55 | 53 54 | breldm | ⊢ ( 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ dom ( ℝ D 𝐺 ) ) |
| 56 | 52 55 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ dom ( ℝ D 𝐺 ) ) |
| 57 | 25 56 | eqelssd | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 58 | df-fn | ⊢ ( ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ↔ ( Fun ( ℝ D 𝐺 ) ∧ dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) ) | |
| 59 | 9 57 58 | sylanbrc | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 60 | 16 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 (,) 𝐵 ) ) |
| 61 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → Fun ( ℝ D 𝐺 ) ) |
| 62 | funbrfv | ⊢ ( Fun ( ℝ D 𝐺 ) → ( 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 63 | 61 52 62 | sylc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 64 | 59 60 63 | eqfnfvd | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) = 𝐹 ) |