This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | ||
| ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | ||
| ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | ||
| Assertion | ioombl1lem4 | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| 2 | ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | |
| 4 | ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 5 | ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 6 | ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 7 | ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 8 | ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 9 | ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 10 | ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 11 | ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 12 | ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 14 | ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | |
| 15 | ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | |
| 16 | inss1 | ⊢ ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 | |
| 17 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ∈ ℝ ) | |
| 18 | 16 3 4 17 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ∈ ℝ ) |
| 19 | difss | ⊢ ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 | |
| 20 | ovolsscl | ⊢ ( ( ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ∈ ℝ ) | |
| 21 | 19 3 4 20 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ∈ ℝ ) |
| 22 | 18 21 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ∈ ℝ ) |
| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem2 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 24 | 5 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 | 4 24 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem1 | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
| 27 | 26 | simpld | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 28 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 29 | 28 7 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 30 | 27 29 | syl | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 31 | 30 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 32 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 33 | 31 32 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 34 | 1nn | ⊢ 1 ∈ ℕ | |
| 35 | 30 | fdmd | ⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 36 | 34 35 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 37 | 36 | ne0d | ⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 38 | dm0rn0 | ⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) | |
| 39 | 38 | necon3bii | ⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 40 | 37 39 | sylib | ⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 41 | 30 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 42 | 32 41 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ℝ ) |
| 43 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 44 | 43 6 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 45 | 9 44 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 47 | 32 46 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 48 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 50 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 51 | 49 50 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 52 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) | |
| 53 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) | |
| 54 | 28 | ovolfsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 55 | 27 54 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 56 | 55 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 57 | 32 56 | sselid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 58 | 52 53 57 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 59 | 43 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 60 | 9 59 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 62 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) ) | |
| 63 | 61 62 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) ) |
| 64 | 63 | simpld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 65 | 52 53 64 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 66 | 26 | simprd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 67 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) | |
| 68 | 67 | ovolfsf | ⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 69 | 66 68 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 70 | 69 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 71 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) | |
| 72 | 70 71 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 73 | 72 | simprd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) |
| 74 | 72 | simpld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ) |
| 75 | 57 74 | addge01d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ↔ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) ) |
| 76 | 73 75 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 77 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 78 | 76 77 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 79 | 52 53 78 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 80 | 51 58 65 79 | serle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ) |
| 81 | 7 | fveq1i | ⊢ ( 𝑇 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) |
| 82 | 6 | fveq1i | ⊢ ( 𝑆 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) |
| 83 | 80 81 82 | 3brtr4g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
| 84 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 85 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) | |
| 86 | 63 | simprd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 87 | 45 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 88 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 89 | 87 88 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 90 | 89 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑆 ⊆ ℝ* ) |
| 91 | 45 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 92 | fnfvelrn | ⊢ ( ( 𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) | |
| 93 | 91 92 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) |
| 94 | supxrub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) | |
| 95 | 90 93 94 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 96 | 95 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 97 | brralrspcev | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) | |
| 98 | 23 96 97 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
| 99 | 50 6 84 85 64 86 98 | isumsup2 | ⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 100 | 87 32 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 101 | 45 | fdmd | ⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
| 102 | 34 101 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑆 ) |
| 103 | 102 | ne0d | ⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
| 104 | dm0rn0 | ⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) | |
| 105 | 104 | necon3bii | ⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 106 | 103 105 | sylib | ⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
| 107 | breq1 | ⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 108 | 107 | ralrn | ⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 109 | 91 108 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 110 | 109 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 111 | 98 110 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
| 112 | supxrre | ⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) | |
| 113 | 100 106 111 112 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 114 | 99 113 | breqtrrd | ⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 115 | 114 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 116 | 6 115 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 117 | 64 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 118 | 86 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 119 | 50 49 116 117 118 | climserle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 120 | 82 119 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 121 | 42 47 48 83 120 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 122 | 121 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 123 | brralrspcev | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) | |
| 124 | 23 122 123 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) |
| 125 | 30 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 126 | breq1 | ⊢ ( 𝑧 = ( 𝑇 ‘ 𝑗 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) | |
| 127 | 126 | ralrn | ⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 128 | 125 127 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 129 | 128 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 130 | 124 129 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) |
| 131 | 33 40 130 | suprcld | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ , < ) ∈ ℝ ) |
| 132 | 67 8 | ovolsf | ⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 133 | 66 132 | syl | ⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 134 | 133 | frnd | ⊢ ( 𝜑 → ran 𝑈 ⊆ ( 0 [,) +∞ ) ) |
| 135 | 134 32 | sstrdi | ⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ ) |
| 136 | 133 | fdmd | ⊢ ( 𝜑 → dom 𝑈 = ℕ ) |
| 137 | 34 136 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑈 ) |
| 138 | 137 | ne0d | ⊢ ( 𝜑 → dom 𝑈 ≠ ∅ ) |
| 139 | dm0rn0 | ⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) | |
| 140 | 139 | necon3bii | ⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
| 141 | 138 140 | sylib | ⊢ ( 𝜑 → ran 𝑈 ≠ ∅ ) |
| 142 | 133 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 143 | 32 142 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ℝ ) |
| 144 | 52 53 74 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ) |
| 145 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) ) | |
| 146 | 56 145 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) ) |
| 147 | 146 | simprd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) |
| 148 | 74 57 | addge02d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ↔ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) ) |
| 149 | 147 148 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 150 | 149 77 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 151 | 52 53 150 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 152 | 51 144 65 151 | serle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ) |
| 153 | 8 | fveq1i | ⊢ ( 𝑈 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) |
| 154 | 152 153 82 | 3brtr4g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
| 155 | 143 47 48 154 120 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 156 | 155 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 157 | brralrspcev | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) | |
| 158 | 23 156 157 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) |
| 159 | 133 | ffnd | ⊢ ( 𝜑 → 𝑈 Fn ℕ ) |
| 160 | breq1 | ⊢ ( 𝑧 = ( 𝑈 ‘ 𝑗 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) | |
| 161 | 160 | ralrn | ⊢ ( 𝑈 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 162 | 159 161 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 163 | 162 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 164 | 158 163 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ) |
| 165 | 135 141 164 | suprcld | ⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ , < ) ∈ ℝ ) |
| 166 | ssralv | ⊢ ( ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | |
| 167 | 16 166 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 168 | 12 | breq1i | ⊢ ( 𝑃 < 𝑥 ↔ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 169 | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 170 | 9 169 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 171 | 170 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 172 | 12 171 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 173 | 172 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 174 | 16 3 | sstrid | ⊢ ( 𝜑 → ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ) |
| 175 | 174 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 176 | 175 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 177 | ltle | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) | |
| 178 | 173 176 177 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 179 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 180 | opex | ⊢ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V | |
| 181 | 14 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 182 | 179 180 181 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 183 | 182 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 184 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 185 | 184 172 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 186 | 170 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 187 | 13 186 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 188 | 185 187 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 189 | op1stg | ⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) | |
| 190 | 188 187 189 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 191 | 183 190 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 192 | 191 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 193 | 188 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 194 | 185 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 195 | 174 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ) |
| 196 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) | |
| 197 | 195 196 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 198 | 187 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑄 ∈ ℝ ) |
| 199 | min1 | ⊢ ( ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) | |
| 200 | 194 198 199 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 201 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 ∈ ℝ ) |
| 202 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 203 | 202 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 204 | 2 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 205 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 206 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) | |
| 207 | 204 205 206 | sylancl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 208 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) |
| 209 | ltpnf | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) | |
| 210 | 209 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 𝑥 < +∞ ) |
| 211 | 210 | pm4.71i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
| 212 | df-3an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 < +∞ ) ) | |
| 213 | 211 212 | bitr4i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 214 | 207 208 213 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 215 | simpr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 𝐴 < 𝑥 ) | |
| 216 | 214 215 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝐴 < 𝑥 ) ) |
| 217 | 216 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 𝑥 ∈ 𝐵 → 𝐴 < 𝑥 ) ) |
| 218 | 203 217 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 < 𝑥 ) |
| 219 | 201 197 218 | ltled | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 ≤ 𝑥 ) |
| 220 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑃 ≤ 𝑥 ) | |
| 221 | breq1 | ⊢ ( 𝐴 = if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) → ( 𝐴 ≤ 𝑥 ↔ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) ) | |
| 222 | breq1 | ⊢ ( 𝑃 = if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) → ( 𝑃 ≤ 𝑥 ↔ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) ) | |
| 223 | 221 222 | ifboth | ⊢ ( ( 𝐴 ≤ 𝑥 ∧ 𝑃 ≤ 𝑥 ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) |
| 224 | 219 220 223 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) |
| 225 | 193 194 197 200 224 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑥 ) |
| 226 | 192 225 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 227 | 226 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ≤ 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 228 | 178 227 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 229 | 168 228 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 230 | 13 | breq2i | ⊢ ( 𝑥 < 𝑄 ↔ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 231 | 187 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 232 | ltle | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) | |
| 233 | 176 231 232 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) |
| 234 | 230 233 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ 𝑄 ) ) |
| 235 | 182 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 236 | op2ndg | ⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) | |
| 237 | 188 187 236 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) |
| 238 | 235 237 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = 𝑄 ) |
| 239 | 238 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = 𝑄 ) |
| 240 | 239 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ 𝑥 ≤ 𝑄 ) ) |
| 241 | 234 240 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 242 | 229 241 | anim12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 243 | 242 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 244 | 243 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 245 | 167 244 | syl5 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 246 | ovolfioo | ⊢ ( ( 𝐸 ⊆ ℝ ∧ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | |
| 247 | 3 9 246 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 248 | ovolficc | ⊢ ( ( ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | |
| 249 | 174 27 248 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 250 | 245 247 249 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) ) |
| 251 | 10 250 | mpd | ⊢ ( 𝜑 → ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 252 | 7 | ovollb2 | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 253 | 27 251 252 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 254 | supxrre | ⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) | |
| 255 | 33 40 130 254 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 256 | 253 255 | breqtrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ , < ) ) |
| 257 | ssralv | ⊢ ( ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | |
| 258 | 19 257 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 259 | 172 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 260 | 19 3 | sstrid | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ) |
| 261 | 260 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 262 | 261 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 263 | 259 262 177 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 264 | 168 263 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 265 | opex | ⊢ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V | |
| 266 | 15 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 267 | 179 265 266 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 268 | 267 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 269 | op1stg | ⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) | |
| 270 | 172 188 269 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) |
| 271 | 268 270 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = 𝑃 ) |
| 272 | 271 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = 𝑃 ) |
| 273 | 272 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ↔ 𝑃 ≤ 𝑥 ) ) |
| 274 | 264 273 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 275 | 187 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 276 | 262 275 232 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) |
| 277 | 260 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ) |
| 278 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) | |
| 279 | 277 278 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ∈ ℝ ) |
| 280 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝐴 ∈ ℝ ) |
| 281 | 172 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑃 ∈ ℝ ) |
| 282 | 280 281 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 283 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) | |
| 284 | 283 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 285 | 279 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐴 < 𝑥 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 286 | 214 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 287 | 285 286 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐴 < 𝑥 ↔ 𝑥 ∈ 𝐵 ) ) |
| 288 | 284 287 | mtbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ¬ 𝐴 < 𝑥 ) |
| 289 | 279 280 288 | nltled | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ 𝐴 ) |
| 290 | max2 | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐴 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) | |
| 291 | 281 280 290 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝐴 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 292 | 279 280 282 289 291 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 293 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ 𝑄 ) | |
| 294 | breq2 | ⊢ ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ↔ 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) | |
| 295 | breq2 | ⊢ ( 𝑄 = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑥 ≤ 𝑄 ↔ 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) | |
| 296 | 294 295 | ifboth | ⊢ ( ( 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∧ 𝑥 ≤ 𝑄 ) → 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 297 | 292 293 296 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 298 | 267 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 299 | op2ndg | ⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) | |
| 300 | 172 188 299 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 301 | 298 300 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 302 | 301 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 303 | 297 302 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
| 304 | 303 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≤ 𝑄 → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 305 | 276 304 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 306 | 230 305 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 307 | 274 306 | anim12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 308 | 307 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 309 | 308 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 310 | 258 309 | syl5 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 311 | ovolficc | ⊢ ( ( ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | |
| 312 | 260 66 311 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 313 | 310 247 312 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) ) |
| 314 | 10 313 | mpd | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) |
| 315 | 8 | ovollb2 | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 316 | 66 314 315 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 317 | supxrre | ⊢ ( ( ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ) → sup ( ran 𝑈 , ℝ* , < ) = sup ( ran 𝑈 , ℝ , < ) ) | |
| 318 | 135 141 164 317 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) = sup ( ran 𝑈 , ℝ , < ) ) |
| 319 | 316 318 | breqtrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ , < ) ) |
| 320 | 18 21 131 165 256 319 | le2addd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ) |
| 321 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) | |
| 322 | 50 7 84 321 57 147 124 | isumsup2 | ⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ , < ) ) |
| 323 | seqex | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ∈ V | |
| 324 | 6 323 | eqeltri | ⊢ 𝑆 ∈ V |
| 325 | 324 | a1i | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 326 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) | |
| 327 | 50 8 84 326 74 73 158 | isumsup2 | ⊢ ( 𝜑 → 𝑈 ⇝ sup ( ran 𝑈 , ℝ , < ) ) |
| 328 | 42 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ℂ ) |
| 329 | 143 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ℂ ) |
| 330 | 57 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 331 | 52 53 330 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 332 | 74 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℂ ) |
| 333 | 52 53 332 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℂ ) |
| 334 | 77 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 335 | 52 53 334 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 336 | 51 331 333 335 | seradd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ) ) |
| 337 | 81 153 | oveq12i | ⊢ ( ( 𝑇 ‘ 𝑗 ) + ( 𝑈 ‘ 𝑗 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ) |
| 338 | 336 82 337 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) = ( ( 𝑇 ‘ 𝑗 ) + ( 𝑈 ‘ 𝑗 ) ) ) |
| 339 | 50 84 322 325 327 328 329 338 | climadd | ⊢ ( 𝜑 → 𝑆 ⇝ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ) |
| 340 | climuni | ⊢ ( ( 𝑆 ⇝ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ∧ 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) → ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) = sup ( ran 𝑆 , ℝ* , < ) ) | |
| 341 | 339 114 340 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 342 | 320 341 | breqtrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 343 | 22 23 25 342 11 | letrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |