This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | ||
| ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | ||
| ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | ||
| Assertion | ioombl1lem3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| 2 | ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | |
| 4 | ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 5 | ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 6 | ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 7 | ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 8 | ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 9 | ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 10 | ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 11 | ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 12 | ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 14 | ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | |
| 15 | ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | |
| 16 | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 17 | 9 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 18 | 17 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 19 | 13 18 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
| 21 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 22 | 17 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 23 | 12 22 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 24 | 21 23 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 25 | 24 19 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℂ ) |
| 27 | 23 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 28 | 20 26 27 | npncand | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 − if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) + ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) − 𝑃 ) ) = ( 𝑄 − 𝑃 ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem1 | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
| 30 | 29 | simpld | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 31 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 32 | 31 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 33 | 30 32 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 35 | opex | ⊢ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V | |
| 36 | 14 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 37 | 34 35 36 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 39 | op2ndg | ⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) | |
| 40 | 25 19 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) |
| 41 | 38 40 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = 𝑄 ) |
| 42 | 37 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 43 | op1stg | ⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) | |
| 44 | 25 19 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 45 | 42 44 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 46 | 41 45 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑄 − if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
| 47 | 33 46 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( 𝑄 − if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
| 48 | 29 | simprd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 49 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) | |
| 50 | 49 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 51 | 48 50 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 52 | opex | ⊢ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V | |
| 53 | 15 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 54 | 34 52 53 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 55 | 54 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 56 | op2ndg | ⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) | |
| 57 | 23 25 56 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 58 | 55 57 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 59 | 54 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 60 | op1stg | ⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) | |
| 61 | 23 25 60 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) |
| 62 | 59 61 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = 𝑃 ) |
| 63 | 58 62 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ) = ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) − 𝑃 ) ) |
| 64 | 51 63 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) = ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) − 𝑃 ) ) |
| 65 | 47 64 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) = ( ( 𝑄 − if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) + ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) − 𝑃 ) ) ) |
| 66 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 67 | 66 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 68 | 9 67 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 69 | 13 12 | oveq12i | ⊢ ( 𝑄 − 𝑃 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 70 | 68 69 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( 𝑄 − 𝑃 ) ) |
| 71 | 28 65 70 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |