This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb ). (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovollb2.1 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| Assertion | ovollb2 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovollb2.1 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) | |
| 3 | ovolficcss | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 5 | 2 4 | sstrd | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝐴 ⊆ ℝ ) |
| 6 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 9 | pnfge | ⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ* → ( vol* ‘ 𝐴 ) ≤ +∞ ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ≤ +∞ ) |
| 11 | simpr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → sup ( ran 𝑆 , ℝ* , < ) = +∞ ) | |
| 12 | 10 11 | breqtrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 13 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 14 | 13 1 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 16 | 15 | frnd | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 17 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 18 | 16 17 | sstrdi | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ⊆ ℝ ) |
| 19 | 1nn | ⊢ 1 ∈ ℕ | |
| 20 | 15 | fdmd | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → dom 𝑆 = ℕ ) |
| 21 | 19 20 | eleqtrrid | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 1 ∈ dom 𝑆 ) |
| 22 | 21 | ne0d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → dom 𝑆 ≠ ∅ ) |
| 23 | dm0rn0 | ⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) | |
| 24 | 23 | necon3bii | ⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 25 | 22 24 | sylib | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ≠ ∅ ) |
| 26 | supxrre2 | ⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ) → ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ↔ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) ) | |
| 27 | 18 25 26 | syl2anc | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ↔ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) ) |
| 28 | 27 | biimpar | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 29 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 30 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) | |
| 31 | 30 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) |
| 32 | 29 31 | oveq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 33 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 34 | 33 31 | oveq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 35 | 32 34 | opeq12d | ⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 = 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) 〉 ) |
| 36 | 35 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) 〉 ) |
| 37 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) ) ) | |
| 38 | simplll | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 39 | simpllr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) | |
| 40 | simpr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 41 | simplr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) | |
| 42 | 1 36 37 38 39 40 41 | ovollb2lem | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) |
| 43 | 42 | ralrimiva | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) |
| 44 | xralrple | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) ) | |
| 45 | 7 44 | sylan | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) ) |
| 46 | 43 45 | mpbird | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 47 | 28 46 | syldan | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 48 | 12 47 | pm2.61dane | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |