This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioombl1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | ioossre | ⊢ ( 𝐴 (,) +∞ ) ⊆ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,) +∞ ) ⊆ ℝ ) |
| 4 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 5 | simplrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑥 ⊆ ℝ ) | |
| 6 | simplrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 7 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 8 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 9 | 8 | ovolgelb | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) |
| 10 | 5 6 7 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) |
| 11 | eqid | ⊢ ( 𝐴 (,) +∞ ) = ( 𝐴 (,) +∞ ) | |
| 12 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝐴 ∈ ℝ ) | |
| 13 | 5 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝑥 ⊆ ℝ ) |
| 14 | 6 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
| 15 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝑦 ∈ ℝ+ ) | |
| 16 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) | |
| 17 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 ) ) ) | |
| 18 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 19 | elovolmlem | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 20 | 18 19 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 21 | simprrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) | |
| 22 | simprrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) | |
| 23 | eqid | ⊢ ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 24 | eqid | ⊢ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 25 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 26 | 25 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 ↔ ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 ) ) |
| 27 | 26 25 | ifbieq2d | ⊢ ( 𝑚 = 𝑛 → if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) = if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 28 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 29 | 27 28 | breq12d | ⊢ ( 𝑚 = 𝑛 → ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ↔ if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 30 | 29 27 28 | ifbieq12d | ⊢ ( 𝑚 = 𝑛 → if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) = if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 31 | 30 28 | opeq12d | ⊢ ( 𝑚 = 𝑛 → 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 = 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) |
| 32 | 31 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) |
| 33 | 25 30 | opeq12d | ⊢ ( 𝑚 = 𝑛 → 〈 ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 = 〈 ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) 〉 ) |
| 34 | 33 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) ≤ ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) , if ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ≤ 𝐴 , 𝐴 , ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) 〉 ) |
| 35 | 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 | ioombl1lem4 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) |
| 36 | 10 35 | rexlimddv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) |
| 37 | 36 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ∀ 𝑦 ∈ ℝ+ ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) |
| 38 | inss1 | ⊢ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ⊆ 𝑥 | |
| 39 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) | |
| 40 | 38 39 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) |
| 42 | difss | ⊢ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ⊆ 𝑥 | |
| 43 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) | |
| 44 | 42 43 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) |
| 45 | 44 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ∈ ℝ ) |
| 46 | 41 45 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ∈ ℝ ) |
| 47 | simprr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 48 | alrple | ⊢ ( ( ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ∈ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℝ+ ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) | |
| 49 | 46 47 48 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℝ+ ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( ( vol* ‘ 𝑥 ) + 𝑦 ) ) ) |
| 50 | 37 49 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 51 | 50 | expr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 52 | 4 51 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝐴 ∈ ℝ → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 54 | ismbl2 | ⊢ ( ( 𝐴 (,) +∞ ) ∈ dom vol ↔ ( ( 𝐴 (,) +∞ ) ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 (,) +∞ ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 (,) +∞ ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) | |
| 55 | 3 53 54 | sylanbrc | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| 56 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 (,) +∞ ) = ( +∞ (,) +∞ ) ) | |
| 57 | iooid | ⊢ ( +∞ (,) +∞ ) = ∅ | |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝐴 = +∞ → ( 𝐴 (,) +∞ ) = ∅ ) |
| 59 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 60 | 58 59 | eqeltrdi | ⊢ ( 𝐴 = +∞ → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| 61 | oveq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 (,) +∞ ) = ( -∞ (,) +∞ ) ) | |
| 62 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 63 | 61 62 | eqtrdi | ⊢ ( 𝐴 = -∞ → ( 𝐴 (,) +∞ ) = ℝ ) |
| 64 | rembl | ⊢ ℝ ∈ dom vol | |
| 65 | 63 64 | eqeltrdi | ⊢ ( 𝐴 = -∞ → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| 66 | 55 60 65 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| 67 | 1 66 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,) +∞ ) ∈ dom vol ) |