This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climserle.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| climserle.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| climserle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climserle.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climserle | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climserle.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | climserle.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 4 | climserle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | climserle.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 9 | 1 8 4 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 11 | 1 | peano2uzs | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 12 | fveq2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 13 | 12 | breq2d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 0 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝜑 → 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 15 | 5 | expcom | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 | 14 15 | vtoclga | ⊢ ( ( 𝑗 + 1 ) ∈ 𝑍 → ( 𝜑 → 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 18 | 11 17 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 19 | 12 | eleq1d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) ) |
| 21 | 4 | expcom | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
| 22 | 20 21 | vtoclga | ⊢ ( ( 𝑗 + 1 ) ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) |
| 23 | 22 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 24 | 11 23 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 25 | 10 24 | addge01d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 0 ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 26 | 18 25 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 28 | 27 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 | seqp1 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 31 | 26 30 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
| 32 | 1 2 3 10 31 | climub | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ 𝐴 ) |