This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | ||
| ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | ||
| ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | ||
| Assertion | ioombl1lem2 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| 2 | ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | |
| 4 | ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 5 | ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 6 | ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 7 | ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 8 | ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 9 | ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 10 | ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 11 | ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 12 | ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 14 | ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | |
| 15 | ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | |
| 16 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 17 | 16 6 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 18 | 9 17 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 19 | 18 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 20 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 21 | 19 20 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 22 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 24 | 5 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 | 4 24 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 26 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 28 | 18 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 29 | 1nn | ⊢ 1 ∈ ℕ | |
| 30 | fnfvelrn | ⊢ ( ( 𝑆 Fn ℕ ∧ 1 ∈ ℕ ) → ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) | |
| 31 | 28 29 30 | sylancl | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) |
| 32 | 21 31 | sseldd | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ℝ* ) |
| 33 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 34 | ffvelcdm | ⊢ ( ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( 𝑆 ‘ 1 ) ∈ ( 0 [,) +∞ ) ) | |
| 35 | 18 29 34 | sylancl | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 36 | 33 35 | sselid | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ℝ ) |
| 37 | 36 | mnfltd | ⊢ ( 𝜑 → -∞ < ( 𝑆 ‘ 1 ) ) |
| 38 | supxrub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 1 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) | |
| 39 | 21 31 38 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 40 | 27 32 23 37 39 | xrltletrd | ⊢ ( 𝜑 → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
| 41 | xrre | ⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) | |
| 42 | 23 25 40 11 41 | syl22anc | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |