This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | serge0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| serge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| serle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | ||
| serle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | serle | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serge0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | serge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 3 | serle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | |
| 4 | serle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | 5 6 | oveq12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) | |
| 9 | ovex | ⊢ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑘 ∈ V → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 11 | 10 | elv | ⊢ ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) |
| 12 | 3 2 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 13 | 11 12 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 14 | 3 2 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
| 15 | 4 14 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 | 15 11 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
| 17 | 1 13 16 | serge0 | ⊢ ( 𝜑 → 0 ≤ ( seq 𝑀 ( + , ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ‘ 𝑁 ) ) |
| 18 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 2 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 20 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 21 | 1 18 19 20 | sersub | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 22 | 17 21 | breqtrd | ⊢ ( 𝜑 → 0 ≤ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 23 | readdcl | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) |
| 25 | 1 3 24 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ ℝ ) |
| 26 | 1 2 24 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 27 | 25 26 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 28 | 22 27 | mpbid | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |