This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | ||
| ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | ||
| ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | ||
| ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | ||
| Assertion | ioombl1lem1 | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.b | ⊢ 𝐵 = ( 𝐴 (,) +∞ ) | |
| 2 | ioombl1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ioombl1.e | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | |
| 4 | ioombl1.v | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 5 | ioombl1.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 6 | ioombl1.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 7 | ioombl1.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 8 | ioombl1.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 9 | ioombl1.f1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 10 | ioombl1.f2 | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 11 | ioombl1.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 12 | ioombl1.p | ⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | ioombl1.q | ⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) | |
| 14 | ioombl1.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) | |
| 15 | ioombl1.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) | |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 17 | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 18 | 9 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 19 | 18 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 20 | 12 19 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 21 | 16 20 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 22 | 18 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 23 | 13 22 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 24 | min2 | ⊢ ( ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ) |
| 26 | df-br | ⊢ ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ↔ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ≤ ) | |
| 27 | 25 26 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ≤ ) |
| 28 | 21 23 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 29 | 28 23 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ( ℝ × ℝ ) ) |
| 30 | 27 29 | elind | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 31 | 30 14 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 32 | max1 | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) | |
| 33 | 20 16 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 34 | 18 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 35 | 34 12 13 | 3brtr4g | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ 𝑄 ) |
| 36 | breq2 | ⊢ ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ↔ 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) | |
| 37 | breq2 | ⊢ ( 𝑄 = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) | |
| 38 | 36 37 | ifboth | ⊢ ( ( 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∧ 𝑃 ≤ 𝑄 ) → 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 39 | 33 35 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 40 | df-br | ⊢ ( 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ↔ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ≤ ) | |
| 41 | 39 40 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ≤ ) |
| 42 | 20 28 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 43 | 41 42 | elind | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 44 | 43 15 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 45 | 31 44 | jca | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |