This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtrestixx.1 | ⊢ 𝐴 ⊆ ℝ* | |
| ordtrestixx.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) | ||
| Assertion | ordtrestixx | ⊢ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtrestixx.1 | ⊢ 𝐴 ⊆ ℝ* | |
| 2 | ordtrestixx.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) | |
| 3 | ledm | ⊢ ℝ* = dom ≤ | |
| 4 | letsr | ⊢ ≤ ∈ TosetRel | |
| 5 | 4 | a1i | ⊢ ( ⊤ → ≤ ∈ TosetRel ) |
| 6 | 1 | a1i | ⊢ ( ⊤ → 𝐴 ⊆ ℝ* ) |
| 7 | 1 | sseli | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ* ) |
| 8 | 1 | sseli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ* ) |
| 9 | iccval | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
| 11 | 10 2 | eqsstrrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ⊆ 𝐴 ) |
| 12 | 11 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ⊆ 𝐴 ) |
| 13 | 3 5 6 12 | ordtrest2 | ⊢ ( ⊤ → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 14 | 13 | eqcomd | ⊢ ( ⊤ → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 15 | 14 | mptru | ⊢ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |