This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2mul2div | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝐶 · 𝐷 ) / 𝐵 ) = ( ( 𝐷 · 𝐶 ) / 𝐵 ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐶 · 𝐷 ) / 𝐵 ) = ( ( 𝐷 · 𝐶 ) / 𝐵 ) ) |
| 7 | 2 | ad2antll | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
| 8 | 1 | ad2antrl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 9 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 11 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 12 | 10 11 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 14 | divass | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐷 · 𝐶 ) / 𝐵 ) = ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) | |
| 15 | 7 8 13 14 | syl3anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐷 · 𝐶 ) / 𝐵 ) = ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) |
| 16 | 6 15 | eqtrd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐶 · 𝐷 ) / 𝐵 ) = ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) |
| 17 | 16 | adantrrr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐶 · 𝐷 ) / 𝐵 ) = ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) |
| 18 | 17 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐶 · 𝐷 ) / 𝐵 ) = ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) |
| 19 | 18 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( 𝐴 < ( ( 𝐶 · 𝐷 ) / 𝐵 ) ↔ 𝐴 < ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) ) |
| 20 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → 𝐴 ∈ ℝ ) | |
| 21 | remulcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 · 𝐷 ) ∈ ℝ ) | |
| 22 | 21 | adantrr | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 · 𝐷 ) ∈ ℝ ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( 𝐶 · 𝐷 ) ∈ ℝ ) |
| 24 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 25 | ltmuldiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 · 𝐷 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ 𝐴 < ( ( 𝐶 · 𝐷 ) / 𝐵 ) ) ) | |
| 26 | 20 23 24 25 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ 𝐴 < ( ( 𝐶 · 𝐷 ) / 𝐵 ) ) ) |
| 27 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 28 | 27 11 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 29 | redivcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) | |
| 30 | 29 | 3expb | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 31 | 28 30 | sylan2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 32 | 31 | ancoms | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ 𝐶 ∈ ℝ ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 33 | 32 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 34 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) | |
| 35 | ltdivmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 / 𝐵 ) ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ↔ 𝐴 < ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) ) | |
| 36 | 20 33 34 35 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ↔ 𝐴 < ( 𝐷 · ( 𝐶 / 𝐵 ) ) ) ) |
| 37 | 19 26 36 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) ) |