This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the isomorphism predicate. We read this as " H is an R , S isomorphism of A onto B ". Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of TakeutiZaring p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cH | ⊢ 𝐻 | |
| 1 | cR | ⊢ 𝑅 | |
| 2 | cS | ⊢ 𝑆 | |
| 3 | cA | ⊢ 𝐴 | |
| 4 | cB | ⊢ 𝐵 | |
| 5 | 3 4 1 2 0 | wiso | ⊢ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) |
| 6 | 3 4 0 | wf1o | ⊢ 𝐻 : 𝐴 –1-1-onto→ 𝐵 |
| 7 | vx | ⊢ 𝑥 | |
| 8 | vy | ⊢ 𝑦 | |
| 9 | 7 | cv | ⊢ 𝑥 |
| 10 | 8 | cv | ⊢ 𝑦 |
| 11 | 9 10 1 | wbr | ⊢ 𝑥 𝑅 𝑦 |
| 12 | 9 0 | cfv | ⊢ ( 𝐻 ‘ 𝑥 ) |
| 13 | 10 0 | cfv | ⊢ ( 𝐻 ‘ 𝑦 ) |
| 14 | 12 13 2 | wbr | ⊢ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) |
| 15 | 11 14 | wb | ⊢ ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 16 | 15 8 3 | wral | ⊢ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 17 | 16 7 3 | wral | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 18 | 6 17 | wa | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 19 | 5 18 | wb | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |