This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection from [ 0 , 1 ) to [ 0 , +oo ) . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | icopnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| Assertion | icopnfcnv | ⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icopnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | 1xr | ⊢ 1 ∈ ℝ* | |
| 4 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 1 ) ) ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 1 ) ) |
| 6 | 5 | simp1bi | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 ∈ ℝ ) |
| 7 | 5 | simp3bi | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 < 1 ) |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | difrp | ⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑥 < 1 ↔ ( 1 − 𝑥 ) ∈ ℝ+ ) ) | |
| 10 | 6 8 9 | sylancl | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → ( 𝑥 < 1 ↔ ( 1 − 𝑥 ) ∈ ℝ+ ) ) |
| 11 | 7 10 | mpbid | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → ( 1 − 𝑥 ) ∈ ℝ+ ) |
| 12 | 6 11 | rerpdivcld | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ℝ ) |
| 13 | 5 | simp2bi | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → 0 ≤ 𝑥 ) |
| 14 | 6 11 13 | divge0d | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → 0 ≤ ( 𝑥 / ( 1 − 𝑥 ) ) ) |
| 15 | elrege0 | ⊢ ( ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| 16 | 12 14 15 | sylanbrc | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) |
| 17 | 16 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,) 1 ) ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) |
| 18 | elrege0 | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) | |
| 19 | 18 | simplbi | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ ℝ ) |
| 20 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 + 𝑦 ) ∈ ℝ ) | |
| 21 | 8 19 20 | sylancr | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 1 + 𝑦 ) ∈ ℝ ) |
| 22 | 2 | a1i | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 ∈ ℝ ) |
| 23 | 18 | simprbi | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑦 ) |
| 24 | 19 | ltp1d | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 < ( 𝑦 + 1 ) ) |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | 19 | recnd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ ℂ ) |
| 27 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 + 𝑦 ) = ( 𝑦 + 1 ) ) | |
| 28 | 25 26 27 | sylancr | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 1 + 𝑦 ) = ( 𝑦 + 1 ) ) |
| 29 | 24 28 | breqtrrd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 < ( 1 + 𝑦 ) ) |
| 30 | 22 19 21 23 29 | lelttrd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 < ( 1 + 𝑦 ) ) |
| 31 | 21 30 | elrpd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 1 + 𝑦 ) ∈ ℝ+ ) |
| 32 | 19 31 | rerpdivcld | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ) |
| 33 | divge0 | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ∧ ( ( 1 + 𝑦 ) ∈ ℝ ∧ 0 < ( 1 + 𝑦 ) ) ) → 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ) | |
| 34 | 19 23 21 30 33 | syl22anc | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 35 | 21 | recnd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 1 + 𝑦 ) ∈ ℂ ) |
| 36 | 35 | mulridd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( ( 1 + 𝑦 ) · 1 ) = ( 1 + 𝑦 ) ) |
| 37 | 29 36 | breqtrrd | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 < ( ( 1 + 𝑦 ) · 1 ) ) |
| 38 | 8 | a1i | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → 1 ∈ ℝ ) |
| 39 | ltdivmul | ⊢ ( ( 𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 1 + 𝑦 ) ∈ ℝ ∧ 0 < ( 1 + 𝑦 ) ) ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ↔ 𝑦 < ( ( 1 + 𝑦 ) · 1 ) ) ) | |
| 40 | 19 38 21 30 39 | syl112anc | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ↔ 𝑦 < ( ( 1 + 𝑦 ) · 1 ) ) ) |
| 41 | 37 40 | mpbird | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) |
| 42 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) ) ) | |
| 43 | 2 3 42 | mp2an | ⊢ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) ) |
| 44 | 32 34 41 43 | syl3anbrc | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ) |
| 45 | 44 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ) |
| 46 | 26 | adantl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℂ ) |
| 47 | 6 | adantr | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 48 | 47 | recnd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 49 | 48 46 | mulcld | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 50 | 46 49 48 | subadd2d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑦 − ( 𝑥 · 𝑦 ) ) = 𝑥 ↔ ( 𝑥 + ( 𝑥 · 𝑦 ) ) = 𝑦 ) ) |
| 51 | 1cnd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 1 ∈ ℂ ) | |
| 52 | 51 48 46 | subdird | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 1 − 𝑥 ) · 𝑦 ) = ( ( 1 · 𝑦 ) − ( 𝑥 · 𝑦 ) ) ) |
| 53 | 46 | mullidd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
| 54 | 53 | oveq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 1 · 𝑦 ) − ( 𝑥 · 𝑦 ) ) = ( 𝑦 − ( 𝑥 · 𝑦 ) ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 1 − 𝑥 ) · 𝑦 ) = ( 𝑦 − ( 𝑥 · 𝑦 ) ) ) |
| 56 | 55 | eqeq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( ( 1 − 𝑥 ) · 𝑦 ) = 𝑥 ↔ ( 𝑦 − ( 𝑥 · 𝑦 ) ) = 𝑥 ) ) |
| 57 | 48 51 46 | adddid | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 1 + 𝑦 ) ) = ( ( 𝑥 · 1 ) + ( 𝑥 · 𝑦 ) ) ) |
| 58 | 48 | mulridd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 59 | 58 | oveq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · 1 ) + ( 𝑥 · 𝑦 ) ) = ( 𝑥 + ( 𝑥 · 𝑦 ) ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 1 + 𝑦 ) ) = ( 𝑥 + ( 𝑥 · 𝑦 ) ) ) |
| 61 | 60 | eqeq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 1 + 𝑦 ) ) = 𝑦 ↔ ( 𝑥 + ( 𝑥 · 𝑦 ) ) = 𝑦 ) ) |
| 62 | 50 56 61 | 3bitr4rd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 1 + 𝑦 ) ) = 𝑦 ↔ ( ( 1 − 𝑥 ) · 𝑦 ) = 𝑥 ) ) |
| 63 | eqcom | ⊢ ( 𝑦 = ( 𝑥 · ( 1 + 𝑦 ) ) ↔ ( 𝑥 · ( 1 + 𝑦 ) ) = 𝑦 ) | |
| 64 | eqcom | ⊢ ( 𝑥 = ( ( 1 − 𝑥 ) · 𝑦 ) ↔ ( ( 1 − 𝑥 ) · 𝑦 ) = 𝑥 ) | |
| 65 | 62 63 64 | 3bitr4g | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑦 = ( 𝑥 · ( 1 + 𝑦 ) ) ↔ 𝑥 = ( ( 1 − 𝑥 ) · 𝑦 ) ) ) |
| 66 | 35 | adantl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 + 𝑦 ) ∈ ℂ ) |
| 67 | 31 | adantl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 + 𝑦 ) ∈ ℝ+ ) |
| 68 | 67 | rpne0d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 + 𝑦 ) ≠ 0 ) |
| 69 | 46 48 66 68 | divmul3d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ↔ 𝑦 = ( 𝑥 · ( 1 + 𝑦 ) ) ) ) |
| 70 | 11 | adantr | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 − 𝑥 ) ∈ ℝ+ ) |
| 71 | 70 | rpcnd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 − 𝑥 ) ∈ ℂ ) |
| 72 | 70 | rpne0d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 1 − 𝑥 ) ≠ 0 ) |
| 73 | 48 46 71 72 | divmul2d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ↔ 𝑥 = ( ( 1 − 𝑥 ) · 𝑦 ) ) ) |
| 74 | 65 69 73 | 3bitr4d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ↔ ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ) ) |
| 75 | eqcom | ⊢ ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ) | |
| 76 | eqcom | ⊢ ( 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ↔ ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ) | |
| 77 | 74 75 76 | 3bitr4g | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 78 | 77 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 79 | 1 17 45 78 | f1ocnv2d | ⊢ ( ⊤ → ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) |
| 80 | 79 | mptru | ⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |