This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssico2 | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 2 | 1 | elmpocl1 | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 4 | 1 | elmpocl2 | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 6 | 1 | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 8 | 7 | simpld | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴 ≤ 𝐶 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 10 | 1 | elixx3g | ⊢ ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵 ) ) ) |
| 11 | 10 | simprbi | ⊢ ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵 ) ) |
| 12 | 11 | simprd | ⊢ ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) → 𝐷 < 𝐵 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐷 < 𝐵 ) |
| 14 | iccssico | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) ) | |
| 15 | 3 5 9 13 14 | syl22anc | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) ) |