This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined bijection from [ 0 , 1 ) to [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icopnfhmeo.f | |- F = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
|
| icopnfhmeo.j | |- J = ( TopOpen ` CCfld ) |
||
| Assertion | icopnfhmeo | |- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icopnfhmeo.f | |- F = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
|
| 2 | icopnfhmeo.j | |- J = ( TopOpen ` CCfld ) |
|
| 3 | 1 | icopnfcnv | |- ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' F = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) ) |
| 4 | 3 | simpli | |- F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) |
| 5 | 0re | |- 0 e. RR |
|
| 6 | 1xr | |- 1 e. RR* |
|
| 7 | elico2 | |- ( ( 0 e. RR /\ 1 e. RR* ) -> ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) |
| 9 | 8 | simp1bi | |- ( x e. ( 0 [,) 1 ) -> x e. RR ) |
| 10 | 9 | ssriv | |- ( 0 [,) 1 ) C_ RR |
| 11 | 10 | sseli | |- ( z e. ( 0 [,) 1 ) -> z e. RR ) |
| 12 | 11 | adantr | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. RR ) |
| 13 | elico2 | |- ( ( 0 e. RR /\ 1 e. RR* ) -> ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) ) |
|
| 14 | 5 6 13 | mp2an | |- ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) |
| 15 | 14 | simp3bi | |- ( w e. ( 0 [,) 1 ) -> w < 1 ) |
| 16 | 10 | sseli | |- ( w e. ( 0 [,) 1 ) -> w e. RR ) |
| 17 | 1re | |- 1 e. RR |
|
| 18 | difrp | |- ( ( w e. RR /\ 1 e. RR ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) |
|
| 19 | 16 17 18 | sylancl | |- ( w e. ( 0 [,) 1 ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) |
| 20 | 15 19 | mpbid | |- ( w e. ( 0 [,) 1 ) -> ( 1 - w ) e. RR+ ) |
| 21 | 20 | rpregt0d | |- ( w e. ( 0 [,) 1 ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) |
| 22 | 21 | adantl | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) |
| 23 | 16 | adantl | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. RR ) |
| 24 | elico2 | |- ( ( 0 e. RR /\ 1 e. RR* ) -> ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) ) |
|
| 25 | 5 6 24 | mp2an | |- ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) |
| 26 | 25 | simp3bi | |- ( z e. ( 0 [,) 1 ) -> z < 1 ) |
| 27 | difrp | |- ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) |
|
| 28 | 11 17 27 | sylancl | |- ( z e. ( 0 [,) 1 ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) |
| 29 | 26 28 | mpbid | |- ( z e. ( 0 [,) 1 ) -> ( 1 - z ) e. RR+ ) |
| 30 | 29 | adantr | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( 1 - z ) e. RR+ ) |
| 31 | 30 | rpregt0d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) |
| 32 | lt2mul2div | |- ( ( ( z e. RR /\ ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) /\ ( w e. RR /\ ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
|
| 33 | 12 22 23 31 32 | syl22anc | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
| 34 | 12 23 | remulcld | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. w ) e. RR ) |
| 35 | 12 23 34 | ltsub1d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) |
| 36 | 12 | recnd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. CC ) |
| 37 | 1cnd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> 1 e. CC ) |
|
| 38 | 23 | recnd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. CC ) |
| 39 | 36 37 38 | subdid | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( ( z x. 1 ) - ( z x. w ) ) ) |
| 40 | 36 | mulridd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. 1 ) = z ) |
| 41 | 40 | oveq1d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. 1 ) - ( z x. w ) ) = ( z - ( z x. w ) ) ) |
| 42 | 39 41 | eqtrd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( z - ( z x. w ) ) ) |
| 43 | 38 37 36 | subdid | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( ( w x. 1 ) - ( w x. z ) ) ) |
| 44 | 38 | mulridd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. 1 ) = w ) |
| 45 | 38 36 | mulcomd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. z ) = ( z x. w ) ) |
| 46 | 44 45 | oveq12d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( w x. 1 ) - ( w x. z ) ) = ( w - ( z x. w ) ) ) |
| 47 | 43 46 | eqtrd | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( w - ( z x. w ) ) ) |
| 48 | 42 47 | breq12d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) |
| 49 | 35 48 | bitr4d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) ) ) |
| 50 | id | |- ( x = z -> x = z ) |
|
| 51 | oveq2 | |- ( x = z -> ( 1 - x ) = ( 1 - z ) ) |
|
| 52 | 50 51 | oveq12d | |- ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) |
| 53 | ovex | |- ( z / ( 1 - z ) ) e. _V |
|
| 54 | 52 1 53 | fvmpt | |- ( z e. ( 0 [,) 1 ) -> ( F ` z ) = ( z / ( 1 - z ) ) ) |
| 55 | id | |- ( x = w -> x = w ) |
|
| 56 | oveq2 | |- ( x = w -> ( 1 - x ) = ( 1 - w ) ) |
|
| 57 | 55 56 | oveq12d | |- ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) |
| 58 | ovex | |- ( w / ( 1 - w ) ) e. _V |
|
| 59 | 57 1 58 | fvmpt | |- ( w e. ( 0 [,) 1 ) -> ( F ` w ) = ( w / ( 1 - w ) ) ) |
| 60 | 54 59 | breqan12d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
| 61 | 33 49 60 | 3bitr4d | |- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 62 | 61 | rgen2 | |- A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) |
| 63 | df-isom | |- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) ) ) |
|
| 64 | 4 62 63 | mpbir2an | |- F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 65 | letsr | |- <_ e. TosetRel |
|
| 66 | 65 | elexi | |- <_ e. _V |
| 67 | 66 | inex1 | |- ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V |
| 68 | 66 | inex1 | |- ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V |
| 69 | icossxr | |- ( 0 [,) 1 ) C_ RR* |
|
| 70 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 71 | leiso | |- ( ( ( 0 [,) 1 ) C_ RR* /\ ( 0 [,) +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) ) |
|
| 72 | 69 70 71 | mp2an | |- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
| 73 | 64 72 | mpbi | |- F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 74 | isores1 | |- ( F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
|
| 75 | 73 74 | mpbi | |- F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 76 | isores2 | |- ( F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
|
| 77 | 75 76 | mpbi | |- F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 78 | tsrps | |- ( <_ e. TosetRel -> <_ e. PosetRel ) |
|
| 79 | 65 78 | ax-mp | |- <_ e. PosetRel |
| 80 | ledm | |- RR* = dom <_ |
|
| 81 | 80 | psssdm | |- ( ( <_ e. PosetRel /\ ( 0 [,) 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) ) |
| 82 | 79 69 81 | mp2an | |- dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) |
| 83 | 82 | eqcomi | |- ( 0 [,) 1 ) = dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) |
| 84 | 80 | psssdm | |- ( ( <_ e. PosetRel /\ ( 0 [,) +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) ) |
| 85 | 79 70 84 | mp2an | |- dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) |
| 86 | 85 | eqcomi | |- ( 0 [,) +oo ) = dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) |
| 87 | 83 86 | ordthmeo | |- ( ( ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) ) |
| 88 | 67 68 77 87 | mp3an | |- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) |
| 89 | eqid | |- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
|
| 90 | 2 89 | xrrest2 | |- ( ( 0 [,) 1 ) C_ RR -> ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) ) |
| 91 | 10 90 | ax-mp | |- ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) |
| 92 | iccssico2 | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) 1 ) ) -> ( x [,] y ) C_ ( 0 [,) 1 ) ) |
|
| 93 | 69 92 | ordtrestixx | |- ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) |
| 94 | 91 93 | eqtri | |- ( J |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) |
| 95 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 96 | 2 89 | xrrest2 | |- ( ( 0 [,) +oo ) C_ RR -> ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) ) |
| 97 | 95 96 | ax-mp | |- ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) |
| 98 | iccssico2 | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x [,] y ) C_ ( 0 [,) +oo ) ) |
|
| 99 | 70 98 | ordtrestixx | |- ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) |
| 100 | 97 99 | eqtri | |- ( J |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) |
| 101 | 94 100 | oveq12i | |- ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) |
| 102 | 88 101 | eleqtrri | |- F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) |
| 103 | 64 102 | pm3.2i | |- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) ) |