This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 2 | itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 4 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 6 | 1 2 5 | mbfmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |
| 7 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 9 | 5 2 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 10 | 8 9 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 12 | ax-icn | ⊢ i ∈ ℂ | |
| 13 | ine0 | ⊢ i ≠ 0 | |
| 14 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 16 | expclz | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 17 | 12 13 15 16 | mp3an12i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 18 | expne0i | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) | |
| 19 | 12 13 15 18 | mp3an12i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 20 | 11 17 19 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ∈ ℂ ) |
| 21 | 20 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 22 | 0re | ⊢ 0 ∈ ℝ | |
| 23 | ifcl | ⊢ ( ( ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) | |
| 24 | 21 22 23 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
| 25 | 24 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ) |
| 26 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 27 | 22 21 26 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 28 | elxrge0 | ⊢ ( if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 29 | 25 27 28 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 30 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 31 | 30 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 32 | 29 31 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 34 | 7 33 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 35 | 34 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 36 | reex | ⊢ ℝ ∈ V | |
| 37 | 36 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 38 | 1 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 40 | 9 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 41 | 9 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 42 | elrege0 | ⊢ ( ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) | |
| 43 | 40 41 42 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 44 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 45 | 44 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 46 | 43 45 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 48 | fconstmpt | ⊢ ( ℝ × { ( abs ‘ 𝐶 ) } ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ 𝐶 ) ) | |
| 49 | 48 | a1i | ⊢ ( 𝜑 → ( ℝ × { ( abs ‘ 𝐶 ) } ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ 𝐶 ) ) ) |
| 50 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) | |
| 51 | 37 39 47 49 50 | offval2 | ⊢ ( 𝜑 → ( ( ℝ × { ( abs ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( abs ‘ 𝐶 ) · if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) |
| 52 | ovif2 | ⊢ ( ( abs ‘ 𝐶 ) · if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) , ( ( abs ‘ 𝐶 ) · 0 ) ) | |
| 53 | 8 9 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) = ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) ) |
| 54 | 53 | ifeq1da | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , ( ( abs ‘ 𝐶 ) · 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) , ( ( abs ‘ 𝐶 ) · 0 ) ) ) |
| 55 | 38 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℂ ) |
| 56 | 55 | mul01d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) · 0 ) = 0 ) |
| 57 | 56 | ifeq2d | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , ( ( abs ‘ 𝐶 ) · 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 58 | 54 57 | eqtr3d | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) , ( ( abs ‘ 𝐶 ) · 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 59 | 52 58 | eqtrid | ⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) · if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 60 | 59 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ( abs ‘ 𝐶 ) · if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) |
| 61 | 51 60 | eqtrd | ⊢ ( 𝜑 → ( ( ℝ × { ( abs ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) |
| 62 | 61 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { ( abs ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ) |
| 63 | 47 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 64 | 2 3 | iblabs | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 65 | 40 41 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 66 | 64 65 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 67 | 66 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 68 | abscl | ⊢ ( 𝐶 ∈ ℂ → ( abs ‘ 𝐶 ) ∈ ℝ ) | |
| 69 | absge0 | ⊢ ( 𝐶 ∈ ℂ → 0 ≤ ( abs ‘ 𝐶 ) ) | |
| 70 | elrege0 | ⊢ ( ( abs ‘ 𝐶 ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ 𝐶 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐶 ) ) ) | |
| 71 | 68 69 70 | sylanbrc | ⊢ ( 𝐶 ∈ ℂ → ( abs ‘ 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 72 | 1 71 | syl | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 73 | 63 67 72 | itg2mulc | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { ( abs ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) = ( ( abs ‘ 𝐶 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 74 | 62 73 | eqtr3d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) = ( ( abs ‘ 𝐶 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 75 | 38 67 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) ∈ ℝ ) |
| 76 | 74 75 | eqeltrd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) |
| 78 | 10 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℝ ) |
| 79 | 78 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℝ* ) |
| 80 | 10 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 81 | elxrge0 | ⊢ ( ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) ) | |
| 82 | 79 80 81 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 83 | 30 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 84 | 82 83 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 86 | 85 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 88 | 20 | releabsd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) |
| 89 | 11 17 19 | absdivd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐶 · 𝐵 ) ) / ( abs ‘ ( i ↑ 𝑘 ) ) ) ) |
| 90 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) | |
| 91 | 90 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℕ0 ) |
| 92 | absexp | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = ( ( abs ‘ i ) ↑ 𝑘 ) ) | |
| 93 | 12 91 92 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = ( ( abs ‘ i ) ↑ 𝑘 ) ) |
| 94 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 95 | 94 | oveq1i | ⊢ ( ( abs ‘ i ) ↑ 𝑘 ) = ( 1 ↑ 𝑘 ) |
| 96 | 1exp | ⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) | |
| 97 | 15 96 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 1 ↑ 𝑘 ) = 1 ) |
| 98 | 95 97 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ i ) ↑ 𝑘 ) = 1 ) |
| 99 | 93 98 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = 1 ) |
| 100 | 99 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) / ( abs ‘ ( i ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐶 · 𝐵 ) ) / 1 ) ) |
| 101 | 78 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℂ ) |
| 102 | 101 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℂ ) |
| 103 | 102 | div1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) / 1 ) = ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 104 | 89 100 103 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) = ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 105 | 88 104 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 106 | 80 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 107 | breq1 | ⊢ ( ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) = if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) → ( ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ↔ if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) ) | |
| 108 | breq1 | ⊢ ( 0 = if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ↔ if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) ) | |
| 109 | 107 108 | ifboth | ⊢ ( ( ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ∧ 0 ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 110 | 105 106 109 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 111 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 112 | 111 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 113 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐶 · 𝐵 ) ) ) | |
| 114 | 113 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐶 · 𝐵 ) ) ) |
| 115 | 110 112 114 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 116 | 115 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) |
| 117 | 0le0 | ⊢ 0 ≤ 0 | |
| 118 | 117 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 119 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) | |
| 120 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) = 0 ) | |
| 121 | 118 119 120 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 122 | 116 121 | pm2.61d1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 123 | 7 122 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 124 | 123 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) |
| 125 | 36 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ℝ ∈ V ) |
| 126 | 85 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 127 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 128 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) | |
| 129 | 125 34 126 127 128 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) |
| 130 | 124 129 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) |
| 131 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ) | |
| 132 | 35 87 130 131 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ) |
| 133 | itg2lecl | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐶 · 𝐵 ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) | |
| 134 | 35 77 132 133 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 135 | 134 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 136 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 137 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) | |
| 138 | 136 137 10 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐶 · 𝐵 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 139 | 6 135 138 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ 𝐿1 ) |