This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is integrable" when F is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isibl.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| isibl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | ||
| isibl2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isibl.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| 2 | isibl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | |
| 3 | isibl2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 ℜ | |
| 8 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 / | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) | |
| 11 | 8 9 10 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) |
| 12 | 7 11 | nffv | ⊢ Ⅎ 𝑥 ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
| 13 | 5 6 12 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
| 14 | 4 13 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) |
| 15 | 14 12 5 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 16 | nfcv | ⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) | |
| 17 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 19 | 18 | fvoveq1d | ⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
| 20 | 19 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
| 21 | 17 20 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 22 | 21 19 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 23 | 15 16 22 | cbvmpt | ⊢ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 26 | 25 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 27 | 24 3 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 28 | 27 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 29 | 28 2 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 ) |
| 30 | 29 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
| 31 | 30 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 32 | 23 31 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 33 | 1 32 | eqtr4d | ⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 34 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) | |
| 35 | 25 3 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 36 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) | |
| 37 | 33 34 35 36 | isibl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |