This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| iblabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | iblabs | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | iblabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 5 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | 4 7 | cofmpt | ⊢ ( 𝜑 → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) |
| 9 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | ssid | ⊢ ℂ ⊆ ℂ | |
| 12 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) |
| 14 | abscncf | ⊢ abs ∈ ( ℂ –cn→ ℝ ) | |
| 15 | 13 14 | sselii | ⊢ abs ∈ ( ℂ –cn→ ℂ ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℂ ) ) |
| 17 | cncombf | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ abs ∈ ( ℂ –cn→ ℂ ) ) → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) | |
| 18 | 6 9 16 17 | syl3anc | ⊢ ( 𝜑 → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) |
| 19 | 8 18 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ) |
| 20 | 7 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 21 | 20 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ* ) |
| 22 | 7 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 23 | elxrge0 | ⊢ ( ( abs ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) | |
| 24 | 21 22 23 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 25 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 26 | 25 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 27 | 24 26 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 29 | 28 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 30 | reex | ⊢ ℝ ∈ V | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 32 | 7 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 34 | 33 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 35 | 33 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) |
| 36 | elrege0 | ⊢ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) ) | |
| 37 | 34 35 36 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℜ ‘ 𝐵 ) ) ∈ ( 0 [,) +∞ ) ) |
| 38 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 40 | 37 39 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 42 | 7 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 44 | 43 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 45 | 43 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) |
| 46 | elrege0 | ⊢ ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | |
| 47 | 44 45 46 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ( 0 [,) +∞ ) ) |
| 48 | 47 39 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 50 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) | |
| 51 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) | |
| 52 | 31 41 49 50 51 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) |
| 53 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) | |
| 54 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | |
| 55 | 53 54 | oveq12d | ⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) |
| 56 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) = ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | |
| 57 | 55 56 | eqtr4d | ⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 58 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 59 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) = 0 ) | |
| 60 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) = 0 ) | |
| 61 | 59 60 | oveq12d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = ( 0 + 0 ) ) |
| 62 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) = 0 ) | |
| 63 | 58 61 62 | 3eqtr4a | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 64 | 57 63 | pm2.61i | ⊢ ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) |
| 65 | 64 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) + if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 66 | 52 65 | eqtr2di | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) |
| 67 | 66 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) ) |
| 68 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) | |
| 69 | 7 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 70 | 2 69 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 71 | 70 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 72 | 1 2 68 71 32 | iblabslem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 73 | 72 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 74 | 41 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 75 | 72 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) |
| 76 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) | |
| 77 | 70 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 78 | 1 2 76 77 42 | iblabslem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 79 | 78 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 80 | 49 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 81 | 78 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ∈ ℝ ) |
| 82 | 73 74 75 79 80 81 | itg2add | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) ) |
| 83 | 67 82 | eqtrd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) ) |
| 84 | 75 81 | readdcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ 𝐵 ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ 𝐵 ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 85 | 83 84 | eqeltrd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 86 | 34 44 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 87 | 86 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ* ) |
| 88 | 34 44 35 45 | addge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) |
| 89 | elxrge0 | ⊢ ( ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ* ∧ 0 ≤ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) ) | |
| 90 | 87 88 89 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 91 | 90 26 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 93 | 92 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 94 | ax-icn | ⊢ i ∈ ℂ | |
| 95 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 96 | 94 43 95 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 97 | 33 96 | abstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ≤ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 98 | 7 | replimd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 99 | 98 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) = ( abs ‘ ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 100 | absmul | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( abs ‘ ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | |
| 101 | 94 43 100 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) |
| 102 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 103 | 102 | oveq1i | ⊢ ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) |
| 104 | 44 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 105 | 104 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) = ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) |
| 106 | 103 105 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) = ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) |
| 107 | 101 106 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) = ( abs ‘ ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 108 | 107 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) = ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 109 | 97 99 108 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ≤ ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) |
| 110 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) | |
| 111 | 110 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) |
| 112 | 56 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) = ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) |
| 113 | 109 111 112 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 114 | 113 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) |
| 115 | 0le0 | ⊢ 0 ≤ 0 | |
| 116 | 115 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 117 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = 0 ) | |
| 118 | 116 117 62 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 119 | 114 118 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 120 | 119 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) |
| 121 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) | |
| 122 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) | |
| 123 | 31 28 92 121 122 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) |
| 124 | 120 123 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) |
| 125 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) ) | |
| 126 | 29 93 124 125 | syl3anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) ) |
| 127 | itg2lecl | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( ( abs ‘ ( ℜ ‘ 𝐵 ) ) + ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) | |
| 128 | 29 85 126 127 | syl3anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 129 | 20 22 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 130 | 19 128 129 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |