This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifan | ⊢ if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) | |
| 2 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | 2 | ifbid | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) ) |
| 4 | 1 3 | eqtr2d | ⊢ ( 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) ) |
| 5 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 6 | 5 | con3i | ⊢ ( ¬ 𝜑 → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 7 | 6 | iffalsed | ⊢ ( ¬ 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = 𝐵 ) |
| 8 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) = 𝐵 ) | |
| 9 | 7 8 | eqtr4d | ⊢ ( ¬ 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) ) |
| 10 | 4 9 | pm2.61i | ⊢ if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) |