This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgmulc2 : positive real case. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgmulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| itgmulc2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| itgmulc2.6 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | ||
| itgmulc2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | itgmulc2lem1 | ⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 2 | itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 4 | itgmulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | itgmulc2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 6 | itgmulc2.6 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | |
| 7 | itgmulc2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 8 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 9 | 5 7 8 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 10 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 11 | 10 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 12 | 9 11 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 14 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 15 | 5 7 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 16 | 3 15 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 17 | 16 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 18 | elrege0 | ⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) | |
| 19 | 4 6 18 | sylanbrc | ⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 20 | 14 17 19 | itg2mulc | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐶 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) = ( 𝐶 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) ) |
| 21 | reex | ⊢ ℝ ∈ V | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 24 | fconstmpt | ⊢ ( ℝ × { 𝐶 } ) = ( 𝑥 ∈ ℝ ↦ 𝐶 ) | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ( ℝ × { 𝐶 } ) = ( 𝑥 ∈ ℝ ↦ 𝐶 ) ) |
| 26 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) | |
| 27 | 22 23 13 25 26 | offval2 | ⊢ ( 𝜑 → ( ( ℝ × { 𝐶 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐶 · if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 28 | ovif2 | ⊢ ( 𝐶 · if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , ( 𝐶 · 0 ) ) | |
| 29 | 1 | mul01d | ⊢ ( 𝜑 → ( 𝐶 · 0 ) = 0 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐶 · 0 ) = 0 ) |
| 31 | 30 | ifeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , ( 𝐶 · 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) |
| 32 | 28 31 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐶 · if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) |
| 33 | 32 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝐶 · if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) ) |
| 34 | 27 33 | eqtrd | ⊢ ( 𝜑 → ( ( ℝ × { 𝐶 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐶 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) ) ) |
| 36 | 20 35 | eqtr3d | ⊢ ( 𝜑 → ( 𝐶 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) ) ) |
| 37 | 5 3 7 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ( 𝐶 · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) ) |
| 39 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 40 | 39 5 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 41 | 1 2 3 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ 𝐿1 ) |
| 42 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 43 | 39 5 42 7 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐶 · 𝐵 ) ) |
| 44 | 40 41 43 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐶 · 𝐵 ) , 0 ) ) ) ) |
| 45 | 36 38 44 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |