This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mulc.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| itg2mulc.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2mulc.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) | ||
| Assertion | itg2mulc | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mulc.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 2 | itg2mulc.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 3 | itg2mulc.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) | |
| 4 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 6 | elrege0 | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 7 | 3 6 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 9 | 8 | anim1i | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 10 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 12 | 4 5 11 | itg2mulclem | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 13 | ge0mulcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 15 | fconst6g | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 17 | reex | ⊢ ℝ ∈ V | |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 19 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 20 | 14 16 1 18 18 19 | off | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 22 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 23 | fss | ⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 24 | 20 22 23 | sylancl | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 26 | 8 2 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 28 | itg2lecl | ⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ∧ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ ) | |
| 29 | 25 27 12 28 | syl3anc | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ ) |
| 30 | 11 | rpreccld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 31 | 21 29 30 | itg2mulclem | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ≤ ( ( 1 / 𝐴 ) · ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 32 | 4 | feqmptd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 34 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 35 | 33 34 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 36 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) | |
| 37 | 1 35 36 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 40 | 39 | mullidd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 1 · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 41 | 40 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 42 | 32 41 | eqtr4d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 43 | 17 | a1i | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ℝ ∈ V ) |
| 44 | 1red | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ ) | |
| 45 | 43 30 11 | ofc12 | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( ℝ × { ( ( 1 / 𝐴 ) · 𝐴 ) } ) ) |
| 46 | fconstmpt | ⊢ ( ℝ × { ( ( 1 / 𝐴 ) · 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) | |
| 47 | 45 46 | eqtrdi | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) ) |
| 48 | 8 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 50 | 11 | rpne0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 51 | 49 50 | recid2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 52 | 51 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 53 | 47 52 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 54 | 43 44 39 53 32 | offval2 | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 55 | 30 | rpcnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 56 | fconst6g | ⊢ ( ( 1 / 𝐴 ) ∈ ℂ → ( ℝ × { ( 1 / 𝐴 ) } ) : ℝ ⟶ ℂ ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ℝ × { ( 1 / 𝐴 ) } ) : ℝ ⟶ ℂ ) |
| 58 | fconst6g | ⊢ ( 𝐴 ∈ ℂ → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℂ ) | |
| 59 | 49 58 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℂ ) |
| 60 | mulass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 61 | 60 | adantl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 62 | 43 57 59 38 61 | caofass | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) ∘f · 𝐹 ) = ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 63 | 42 54 62 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 65 | 29 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℂ ) |
| 66 | 65 49 50 | divrec2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 67 | 31 64 66 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) ) |
| 68 | 5 29 11 | lemuldiv2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) ) ) |
| 69 | 67 68 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 70 | itg2cl | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ) | |
| 71 | 24 70 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ) |
| 72 | 26 | rexrd | ⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) |
| 73 | xrletri3 | ⊢ ( ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) | |
| 74 | 71 72 73 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) |
| 76 | 12 69 75 | mpbir2and | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 77 | 17 | a1i | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ℝ ∈ V ) |
| 78 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 79 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 80 | 0re | ⊢ 0 ∈ ℝ | |
| 81 | 80 | a1i | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 ∈ ℝ ) |
| 82 | simplr | ⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → 0 = 𝐴 ) | |
| 83 | 82 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) |
| 84 | mul02 | ⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) | |
| 85 | 84 | adantl | ⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 86 | 83 85 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) = 0 ) |
| 87 | 77 78 79 81 86 | caofid2 | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( ℝ × { 0 } ) ) |
| 88 | 87 | fveq2d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
| 89 | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 90 | 88 89 | eqtrdi | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = 0 ) |
| 91 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 92 | 91 | recnd | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℂ ) |
| 93 | 92 | mul02d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · ( ∫2 ‘ 𝐹 ) ) = 0 ) |
| 94 | simpr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 = 𝐴 ) | |
| 95 | 94 | oveq1d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · ( ∫2 ‘ 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 96 | 90 93 95 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 97 | 7 | simprd | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 98 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 99 | 80 8 98 | sylancr | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 100 | 97 99 | mpbid | ⊢ ( 𝜑 → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 101 | 76 96 100 | mpjaodan | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |