This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| mbfmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| mbfmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| Assertion | mbfmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 2 | mbfmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | mbfmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 4 | 3 2 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 5 | 1 | recld | ⊢ ( 𝜑 → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
| 8 | 3 2 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 9 | 8 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 11 | 7 10 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 12 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ V ) | |
| 13 | fconstmpt | ⊢ ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ) |
| 15 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) | |
| 16 | 4 6 9 14 15 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 17 | 1 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 18 | 17 | renegcld | ⊢ ( 𝜑 → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 20 | 8 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 21 | fconstmpt | ⊢ ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) ) |
| 23 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) | |
| 24 | 4 19 20 22 23 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 25 | 4 11 12 16 24 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 26 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
| 28 | 20 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 29 | 27 28 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 30 | 11 29 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 31 | 27 28 | mulneg1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 33 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 34 | 33 8 | remuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 35 | 30 32 34 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) |
| 36 | 35 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
| 37 | 25 36 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
| 38 | 8 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
| 39 | 3 38 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
| 40 | 39 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
| 41 | 10 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 42 | 40 5 41 | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 43 | 39 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
| 44 | 28 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 45 | 43 18 44 | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 46 | 42 45 | mbfadd | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
| 47 | 37 46 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
| 48 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ V ) | |
| 49 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ V ) | |
| 50 | 4 6 20 14 23 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 51 | fconstmpt | ⊢ ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) | |
| 52 | 51 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ) |
| 53 | 4 26 9 52 15 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 54 | 4 48 49 50 53 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 55 | 33 8 | immuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 56 | 55 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 57 | 54 56 | eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
| 58 | 43 5 44 | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 59 | 40 17 41 | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 60 | 58 59 | mbfadd | ⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
| 61 | 57 60 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
| 62 | 33 8 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 63 | 62 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) ) ) |
| 64 | 47 61 63 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |