This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmptcl.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| mbfmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmptcl.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 2 | mbfmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | mbff | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
| 5 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 6 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 | 7 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
| 9 | 4 8 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 10 | 9 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |