This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom F e. dom S.1 to represent this concept because S.1 is the first preparation function for our final definition S. (see df-itg ); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isi1f | ⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 | ⊢ ( 𝑔 = 𝐹 → ( 𝑔 : ℝ ⟶ ℝ ↔ 𝐹 : ℝ ⟶ ℝ ) ) | |
| 2 | rneq | ⊢ ( 𝑔 = 𝐹 → ran 𝑔 = ran 𝐹 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑔 = 𝐹 → ( ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |
| 4 | cnveq | ⊢ ( 𝑔 = 𝐹 → ◡ 𝑔 = ◡ 𝐹 ) | |
| 5 | 4 | imaeq1d | ⊢ ( 𝑔 = 𝐹 → ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) = ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑔 = 𝐹 → ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑔 = 𝐹 → ( ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ↔ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 8 | 1 3 7 | 3anbi123d | ⊢ ( 𝑔 = 𝐹 → ( ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
| 9 | sumex | ⊢ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ∈ V | |
| 10 | df-itg1 | ⊢ ∫1 = ( 𝑓 ∈ { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } ↦ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ) | |
| 11 | 9 10 | dmmpti | ⊢ dom ∫1 = { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } |
| 12 | 8 11 | elrab2 | ⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |