This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfimasn | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ { 𝐵 } ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 2 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 3 | iccid | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
| 5 | 4 | imaeq2d | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) = ( ◡ 𝐹 “ { 𝐵 } ) ) |
| 6 | mbfimaicc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) | |
| 7 | 6 | anabsan2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) |
| 8 | 7 | 3impa | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ { 𝐵 } ) ∈ dom vol ) |