This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of set exponentiation. ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapvalg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapex | ⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) |
| 3 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 4 | elex | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) | |
| 5 | feq3 | ⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑦 ⟶ 𝑥 ↔ 𝑓 : 𝑦 ⟶ 𝐴 ) ) | |
| 6 | 5 | abbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } = { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝐴 } ) |
| 7 | feq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑓 : 𝑦 ⟶ 𝐴 ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) | |
| 8 | 7 | abbidv | ⊢ ( 𝑦 = 𝐵 → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |
| 9 | df-map | ⊢ ↑m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ) | |
| 10 | 6 8 9 | ovmpog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |
| 11 | 10 | 3expia | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) ) |
| 12 | 3 4 11 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) ) |
| 13 | 2 12 | mpd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |