This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsng | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) | |
| 2 | snfi | ⊢ { 𝐵 } ∈ Fin | |
| 3 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) | |
| 4 | 2 3 | mp3an2 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) |
| 5 | 1 4 | sylan2br | ⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) |
| 6 | hashsng | ⊢ ( 𝐵 ∈ 𝑉 → ( ♯ ‘ { 𝐵 } ) = 1 ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 8 | 5 7 | sylan9eq | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 9 | 8 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |